A Reference Manual for the

EAsIC XL TOOLKIT

Copyright (c) 1984, 0.8.S., Inc.

Optimized Srstems Software, Inc.
1221 -B Kentwood Avenue
San Jose, California, 95129
Fhone: (488) 444-3a%99

PREF&AaCE

Congratulations on purchasing a copy of the BASIC XL TOOLKIT.

Before you beqgin your tour through this manual,
we would likKe to call your attention to a cocuple of important matters,

RLINTIME B&aSI C >0

When ~ou purchased this BASIC XL TOOLKIT package, rou acquired the
right to use the RunTime version of BASIC XL to distribute programs

you have written in BASIC XL. You may distribute these pragrams on
either a free basis <i(zometimes «called "public domain"} ar on &
commercial baszis, for profit, without paring 0SS anr additicnal
amounts.

However, before distributing a copr of the RunTime program, »ou
must return a sigred copy of the License Agreement included ac part of

thie ToolKit package. The License Agreement provides, amcong cther
things, that »rou must affix a label bearing the coprright and
trademark af 0.5.8., Inc., to each and every copy which yaou

distribute. Please read the License Agreement carefully <for more
details before signing and returning it to 0.5.8., Inc.

BaSSIC XL Cartr idge Yersions

The extended BASIC XL statements described in Chapter 2 of thiz manusal
and the programs demonstrating the use thereof described in Chapter 4
will not work on BASIC XL cartridges with wersion numbere octher than
1.82! We are sorry about this, but the extensions "hook into' =
many places within the cartridge that it is zimply not practica!l ta
provide multiple versions of the code.

When you turn on your computer and enter the BASIC XL cartridge, there
is a coprright notice which alsc szpecifies the version number of wour
cartridge. Check that version number. If it is not version 1.82, wou
have two options:

(1) Return your BASIC XL ToolKit for a full refund. For aur ouun
peace of mind, you must also return your BASIC XL cartridge s=o
that we may verify that it is indeed not version 1.62.

2> You may purchase an updated version 1.82 cartridge from 0%
for the postpaid price of $15, check or money order anly, please
You must return your old BASIC XL cartridge with »our check. 0l
dire circumstances, we can arrange to ship a cartridge and await
receipt of »ours. You must call us to arrange this, and »ou muszt
have a MasterCard or Visa card handy. Extra charges will appls>.)

Please note that current 1.82 cartridges are gold-plated @ +or
lTonger and healthier life) and are beveled (for a better Fit).

START PROGRASMMING !

td

LHbhpbbM

Fun-Time BaSIC XL
1.1 How Does the RUNTIME Package Work?
1.2 How Do You Use the RUNTIME Package?
1.2 Statements that can NOT be used.
1.4 Error Handling
1.5 FRunTime Restart
1.6 Incompatibilities
Example BASIC XL Prcocgrams
2.1 MEMU
2.2 SHAILS trails
2.3 PICOADVenture
2.4 LEM (lunar lander)
2.8 GTIATEST
2.4 CIRCLES
2.7 DIEKIO {by sectors)
2.8 CONFIGure your disk drive
2.9 PHOME diary, a Little Black Book
2.18 MAKEAUTO (AUTORUN.SYS)
The Extended Statements of BASIC XL
2.1 How to load and use extended statements.
2.2 Abbreviations used in this text.
2.2 Procedure Blocks and the Related Statements
3.2.1 PROCEDURE
2.2.2 CALL
2.2.2 LOCAL
Z.2.94 EXIT
2.4 Sorting Capabilities
2.4.1 SORTUP
3.4.2 SORTDOWN
xample BASIC XL Programs with Extended Statements
.1 FACTOR (factorial?
.2 SORTDIR
.3 SORTNUM
.4 GTIATEST
.3 DISKIO
.4 PHONE (Little Black Book)

T atbal = o F Conmntern t

U I QU OV I il

—
)

....
o I o I M Y

3 B
fu—y

]
| U O KV Y)

4o G py b

] PR T

DGR S S R BN T O SR OO R

O 3 00 (R oo 00 o

) o

T IR B I € i
a0 b SO

ZHesFPTER L

THE BasIC XL RUNTIME PACKAaGE

On the labeled side of »our BASIC XL Toolkit diskette j= a file
"BASICXL.COM" , This file contains the BASIC XL RunTime Fraogram. That
program allows you to run BASIC XL programs witnout the B&SIC KL
cartridge.,

1.1 How Does the RUNTIME Package Work?
The BASIC xL RunTime Program contains those portionz of the B&SIC

cartridge which are used when prcgrams are running. The program dos
not, however, contain any portions of the cartridge which are used t
write new programs or dit existing preograms. Thus, a pragram runnin
under the BASIC XL RunTime Package can’t perform such statements a
LIST, ENTER, DEL, etc. Obviously, then, the BASIC XL cartridge i
¢till required to develop programs.

e 0o T

The RunTime Program itself is Jjust an Atari standard binar» file which
ma» be run under any Atari-compatible DOS, such as DOS XL or &tari
DOSs. The program may be run in any of three Wayrs—=—as an
AUTORUN.SYS Ffile, as a .COM file under DOS L, or as an ordinarw
binary file using the "L" option of Atari DOS. When the RunTim
Program begins, it searchees the disk in drive | (D1:) for the il
AUTORUN.BXL . I+ that file is found, it is lcaded into memaory zand run
as if the command RUN "D:AUTORUN.BXL" had been issued in responze to
the READY prompt. If the file AUTORUN.BXL is not present on the dis=zk,
RunTime will continually tr» to find it. tTou should eject wour
diskette, shut off power, and try aqain.

hd

n

1.2 How Do You Use the RUNTIME Package?
The easiest way to use the BASIC XL RunTime Package iz to perform *the
tollowing steps:

1. Inmitialize a new disk and write D0S.SYS to it. You o maw
virtually any Atari-compatible DOS for this purpose. HRaote “rhaz

DOSXL.XL (after being renamed to DOSXL.SYS) is compatible o trn
RunTime.

2. Copy the file BASICXL.COM from the BASIC XL Toolkit disk to a .1z
called AUTORUN.SYS on the newly initialized disk.

3. Copy the BASIC XL program »ou want to run to the new dizk and -zma
it AUTORUN.BXL.

4. Boot the disk thus created. I+ vyou have performed the previzus
steps correctly, your BASIC XL program will run automaticallw.
Whenever the disk »ou created above is booted, »our program will T,
If you have several programs you want to run with the RunTime Fachkage
and vou don’t want to dedicate several disks just to that purcoss, .ou
can simply put (or SAVE) some type of menu program onto the disk
AUTORUN.BXL and use it to select from other programs when the diz«
booted. You are welcome to use the program MENU.BXL, described

section 2.1, for this purpose.

— i

o

BxL ToolKit Fao

Ty

130
g
—

1.3 Statements that can NOT be used with RUNTIME

Az we noted abowe, the BASIC XL RunTime Program does not contain thoce
portions of the code from the BASIC XL cartridge which relate to
program development. Any BASIC XL program which rou want to use with
the RunTime Fackage cannot use program development statements, I+ the
B+SIC XL RunTime Prcgram encounters such a statement in vour program,
execution will stop with the message "Unimplemented statement in tine
#¥x", and you will be asked to hit the START Key for a PunTime Rectart
{csee belowd. The following iz a list of all BaSIC XL statements
illegal when using RunTime BRSIC XL:

LIST ENTER
NEW DEL
REMNLIM TRACE
TRACEQFF LVAR

In addition, the following BARSIC XL statements have slightly different
meanings when uszing the RunTime Package:

DOS -- #After this statement returns control to whatever DOS was
bocted, »ou can not return to BASIC XL or your BASIC program.

END -- This statement stops the running program and promptsz the
user to hit the START kKey to do a RunTime Restart.

STOP -- This statement works exactly like END, but al:o prints the
line number at which execution was ended. .

1.4 Error Handling In RUNTIME BASIC XL
Errors which are TRAPped by the running program are treated swactly

the same way as when using the BASIC XL cartridge. Errors which =zre
not TRAPped are treated slightly differently, however. I+ an erraor =
allowed to happen when no TRAP is active, an error mesz:zzcs =
displared showing the line number where the error occurred, anc -na
user is prompted to hit the START Key to do a RunTime Restar*. “re

A]
1]

user is not allowed to view or change the program after an errc- -: n
could with the BASIC XL cartridge.

1.5 RunTime Restart
At various points above, we noted that under certain circumstarncs:

c

A

may receive a message telling vou to hit START to do a "Fur™ 7s
Restart" <(the message may indicate that RunTime will "Re-% - Y
program). When this occurs, hitting START will cause RunTime tc b
again RUN the program Ffile, AUTORUN.BXL. I+ »your part - ar
AUTORUN.BXL has chained to another program, the subsequent progra- D=
erased and all work not already written to file(s) is last, e
that RUN always closes all files, so at least no files are -t

dangling open.)

1.6 Incompatibilities

The only difference between RunTime BASIC XL and the B&Iil L
cartridge which affects procgram execution is memory usage. ER
RunTime BASIC XL is not in a SuperCartridge, it can't "save" me~-rv
like cartridge BASIC XL. For this reason, the BASIC XL FRur™ me
Program takes wup about 11 thousand bytes of code rather *t-:n &
thousand bytes. If your BASIC XL program is extremely large, it ~aw
nat run under RunTime BASIC XL.

Page 2 BxL Too it

CHEAaPTER 2
Erm=1I C =L Example FPracgram=
Zide one of your TeolkKit disk contains ten programs writtsr in

S
standard BAZIC ¥ which will, we hope, give »ou & feel ngy +for the
capaoilities fand Timitations) of the language.

~lthough the selection of programs is very broad, we certainly can not
gquarantes that wou will +ind a procgram which answers &all wour
questions abcocut S&SIC XL, In fact, perhaps we should tegin .
discussing =zome of the things which the example programs do rot delue

intca.

First, we do not worry about the BREAK and RESET Kervs. These programs
are meant as examples for ycou, as a programmer or future proaorammer,
ta RUMN and try. fAs such, we thinkK you should e aiiowed
and encouraged toc stop a program at any time, see where it iz at and
what it is doing, and (our fervent hope) change it sc¢ it works better!

Second, we don't try to TRAP all disk errors, etc. The programs here
all work properly if given properly formatted disks with the right
data/pragrams (if called forJ). #Again, our philosophy was tc allcw wou
to explore the consequences of disk errors and guard against them in
FOUr OWN Way, (And, truthfully, extensive I/0 trapping in zome of
thecse programs is =zimply not necessary.)

Third, we do not get into any heavy math. For those of »ou who =a
into analytical geometry and its ilk, we apologize, Unfortunztelw
¥ou are in a distinct minority when compared to those who want tz o
their machine for simple graphics and/or business applications.

atter this introduction) wvary considerably in the depth with wh ch
they explore the workings of the ccocde. Again, this is on purpose.

Faourth, the descriptions of the programs <(which follow immedia®tslw

The most complicated of the programs <e.qg., PICOADVENTURE xnd
BLACK BOOK)> are so large that even documenting each group of tern !:res=
thoroughly would require a book several times the size of this maruzl,
In thece cazes, we have tried to explain the principles bter:nd
blocks of code. “You are encouraged (there’s that word agair: to
explore each and every line for its implications.

Gn the other hand, some of the programs are discected in painstzi ing
detail (e.g., MENU and GTIATEST). In csome cases, we have chosen =

thaorough simply to gives beginners a chance to see the full working: of
2 program. In other cases, the thoroughness is dictated b+» *he
complexity of the subject. (Perhaps we are using a poerly documsnted

teature of either BASIC XL or Atari“s 0S8 or hardware.) Mainly,
though, we describe a program intimately because we want to get »ou in
the right “track," thinking of properly structured programs, ccod
error trapping, etc.

S0 much for the thinge we do pot do in this ToolKit., What do we do7®
ible thought »ou’'d never ask.)

EXL Toolkit F

w

oo
g
el

I+ wvou are interezted in graphics in general and games in particular,
we turn rour attention to SNAILS TRAILS, GTIATEST, CIRCLES, and
reszpeciall») LEM.

Inte adventure games? Try PICOADVENTURE as a ctart on writing »our
own ! {You might want to try plaring and solving the game before
reading the description.?

Want to learn more about how to talk teo yvour disk drive? Look at
CONFIG and DISKIO.

Interecsted in application programs? Want to learn how to construct
random—access andsor keved—access files? Look at BLACK BOOK.

Finally, MENU and MAKEAUTO are general utility programs. 7Tou will
undoubtedly use them, but you may not need to wunderstand them. But
read about them an»way., The description of MENU, especiall», iz very
detailed and gives some good hints on programming strle.

A Commentary on Case -- In the descriptions which follow, we zometimes
change a Kewyword or variable name to all upper case letters, despite
the fact that the program listings will (as is usual in BASIC xL» =zhauw
such names in mixed wupperslower case. This is done on purpose +or
emphasis only. You need not use upper case unless you have chaosen
Atari BASIC compatibility (via SET 5,8).

Page 4 ' BxL Toolkit

2.1 MENU.BXL

Iin most wars, this is the simplest program we will present in tnri
secticon. MENU.BXL is zimply a program which presents & menu of awvail
zole BAR2IC %L programes and allows »ou to choose one of them to RUN.
[f »you are an experienced Atari BASIC user, you have probably seen
werzions of this program floating around in magazines, wuser groups,
etc., for years. We think, though, that our version haz scme zdvan-
tages which are worth discussing.

1876-1888 These lines set the tone for not only this program Eut,
where possible, for &ll programs in this ToolKit, e reallw
didn’t need to initialize COUNT to zero, since BARSIC “L quarantees
that all variables start at 8.8 when a program is first RUN. Eut
isn‘t this better? We both point out that we are using = variable
named COUNT and that we know what its starting value sheould be.

Further, we could have coded line 1888 as

1888 &lpha = 44
but would that have any meaning to you? As we wrote it, the !ine
clearly shows that ALPHA has a numeric value one lesz than t*he
ATASCII wvalue of the letter A.

11080 We chose the dimensions of FILE$ very carefully. There zre 2é&
elements in the array because we won’t allow more than 24
filenames in ocur menu. (That way we can select any program with a
single letter, A to Z.) And each element has 14 characters
because that is the maximum possible for a filename of the form
“Difilename.2xt®, I+ you wish to allow disk drive numbers in wour
version of this menu, you will need to increase the zscond

dimension here to 1S5.

1138 This POKE is documented in many books, including Mappins tre
Atari, from COMPUTE! books. A non-zero value turns coff the
cursor. A zero value turns it back on.

1248 Did you remember that an OPEN in mode & is actually an 0OFE. of
the directory? Geood. For all intents and purposes, thi=z TFEM
will cause subsequent INPUTs to read the same data vou se= e

you give a DIR command. Try it. Type in

DIR "D:#.BXL"
and =ee what is displared. (Yes, yes, the quotes aren’'t r=zllyw
needed. e know, thanks.?

1258 Sometimes, in our zeal to avoid GOTO statements, we hawe gons ¢
great lengths in these example programs. This is a good instanc
of such a great length. We read the first file name from tn
directory here solely because we want the WHILE loop that foliaw
to look neat. Ah, don’t knock it. It works.,

[) O

1240 We begin the promised WHILE locop. Note how we ensure that

e
wan’t get more than 28 names. We check the second character fcor a
space because the only line of the directory where it is not &
zpace is the line noting the number of free sectorse t(which iz, not

coincidentally, the last. line of the directory).

BXL ToolKit F

w
L g
n

)

1278-1318 We dewelop the name which will be held in the string array,

1320

File$. First, we count thics as a valid name. Then we find cut
where the firz=t blank after the first letter of the filename ic

Example: for the file "MENU.BXL", the directory listin

g is

% MENU BXL 888 i
or similar, where the “%#° means the file is PROTECTed and the
‘088’ is arbitrary. Here, the FIND function would tell us that
the value of BLANK will become 7, the blank after the U7 of
“MENU . Line 1298 is necessary in case the file has 8 letters in

ite name (the blank Ffound will then be the one between the
externsian and the number of sectors’.

In line 12868, we play a trick that works neat and sweet in BASIC
XL (and also in Atari BASIC, but we had to brag a littlen: Az
long as wou are moving characters "down" in memory (think of that
as moving them left in a printed string), you mayr overlap »our
string assignment without error! This line, then, strips off the
first two characters and all characters from the blank aon. EBingo.

Finally, in line 1318, we actually put the nmname into the =ztring
array. Mote the form it takes: "D:filename.BxXL", whers
"filename" may have from | to 8 characters,

-1348 This is just a bit tricky. Since we want our menu to be
able to hold 28 names, we can’t simply list them straight down cur
24 line screen. lle must put them two to a line. The expresszion
COUNT&! <where 7&7 is BASIC XL's “bitwise ang’ operator

effectively «checks whether COUNT is even or odd. If the COUNT |
odd, we will put the name at horizontal (X) position 7. If it
even, we will put it at XK-position 22,

Wt

The wertical position is alsc obtained through a little magic. To
see why it works, try various values for COUNT and observe what
Y value results., We will start you off:

I+ COUNT i will. be

W R =
W W <

[
|

o

OKay? Then line 1348 is easy. We simply POSITION ocurselussz =zt
the place we have calculated and print an indicator and the name.
But just what is that indicator? Remember, ALPHA is one lesz than
the ATASCII value of the letter “A7., So if COUNT is 1, PRINT ng
CHR$(Alpha+Count) will produce the letter “A° on the zcresn.
Similarly, a COUNT of 2 will produce a “B’, etc. Now wvou kKnow why
we chose the value for ALPHA which we did.

& BxbL Toolkit

1350-1378 Here we simply get the next line from the directorr and go
back +to the tap of the WHILE leoop. If it isnt a name (i.e.., i¥
it iec the free sectors line) or if we already have 2Z& names, the
loop will halt and fall through to the CLOSE of line 1378. e are

then done with the directory.

1418 This ie tLthe best way to get a single Kerstroke on an Atar|
computer. OPEM up the Yeyboard ("K:") and GET =& ker (as in 1line
14408)>., Sure, you can do it with PEEKs and POKEs and whatewver, out
why bother? (Exception: if vyou don’t want to wait for the ke,

you will have to use at least one PEEK.>

1420 and 15186 This is an "endless" WHILE 1lcop. We could
achieved the same thing by eliminating line 1420 and changing
to read GOTO 14386. But that‘s terribly ugly! As well as b
poor structured programming style.

g
—
i

=3 -
[T IO O

[(=

1436-1478 We ask the user to press a Key, get the key» +from the

Kervboard, and strip it of extraneous bits. Ummmm..."extraneous
bits"?

By doing a bitwise and (&) of KEYPRESSED with $5F (that s 75
decimal ar 81611111 binary>, we have removed the uppermost bit
(bit 7——which would indicate inverse video) and also bit S which
distinguishes upper case letters from lower case). So no matter
what Kind of letter the wuser pushes, we see an upper czze,

non—-inverse video character.

Now , i f it truly was a letter, subtracting ALPHA from it w11}
convert it into the range of | to 26. Funny thing how the
elements of our <tring array are numbered from 1 to 2&. Do -ou
think that’'s a coincidence? (If so, we‘ve gqot some beach<-_.nt
property in Nevada we’d like you to invest in.»>

So, in line 14468, we wvalidate that the letter chosen iz - =
range we have filenames for. (If it isn“t, we sKip to lins 3.0,
the ENDIF, and go through the WHILE loop again.> Then we zho --e
user what filename hes/she chose. Just to Keep them happy wh =...

1488-1498 Line 1488 illustrates the proper use of a TRAP in = SR
structured BASIC XL program. You should always TRAP to ths -3t
line of a loop or condition. Here, if we get an error |
1498, we want to go back and ask for another menu =e]l
Voila. (Exception: Sometimes wou will want to have =

1
—t

routine for handling TRAPped errors. That‘s a good idezx. —ut
beware of leaving WHILEs, GOSUBs, etc., sitting on the Fur-7 me
stack.?

And, at last, we get to use this program as it was intended. e
actually RUN the program requested by the user. HNote that =.-:ze
we PRINTed the name in line 1478 it“s hard to make a mistake hsore,
But a dickette failure (bad sector, etc.> could triggsr -~he
TRAP when the file doesn“t load properly. We emulate the Zow

Scouts: Be Prepared.

BXL ToolKit . sl o

2.2 SNAILS

I+ »ou read 38 Days to Understanding BASIC XL (or, better wet, worked
»our way through ity, »ou wiil probably remember Chapter ¥xIX and an
arcade game program calied SNAILSY TRAILS. This game can give wou &
real teeling of historical perspective!

Er todar’s standards, SNAILS® TRAILS is a simplistic game with
marginal video appeza'. A short five or six »ears ago, though, a wverw

zimilar game called SURROUND was one of the hot csellers 1n the Atari
2483 VIS market., And, as recently as the time of the Disner mouvie
"Tron," the "light crcles" plaved a variation on the same game.

Anyway, zince this game has been overdone &already, why are e
rehashing it on this digsk? Truthfully, because the version in our

tutorial was writrten using only the statements presented in that book,
and we wanted to show wou what just a few added statements caould 2o tao
BASIC XL program. The result is a well structured and even readable
program. :

In the description which follows, we will not explore those parts of
the program which are the same as the wversion <shown in the book.
itlote that the line numbers do not match those in the bocock. Zorrw

about that, but there are enough differences that they couldn’t h
been identical, anrway.)

ave

1886 In the book, we had two variables (SCORE® and SCORE1) to b
track of the plavers’ pointse. Here, we use a two element zarra
We 11 show why below.

T
A ¢
L

268 Isn“t this easy to wunderstand? You can translate thiz :nto
English as follnwes "As long as neither player has scorec |
points, keep plaring!"

298 and 348 In the original, the COLORs are different. lle chz-zzd
them because it makes it easier to flash one of the slime trz:ls=
(line 288@).

498-566 The main movement loop translates to English pretty izl
also: "While neither plaver has hit anything." Then, =since e
aren’t driwing this locop with FOR MOVE.. anymore, we have fo Zump
the MOVE number. The only place MOVE is used, though, iz in e

&98, as the frequency value in a SOUND statement. But SOUND wor
let us wuse a wvalue greater than 255 for frequency, =o aft
bumping MOVE we 1Timit it to an 8-bit value.

You sar you don‘t wunderstand how bitwise-and (&) works after
reading the brief description in the reference manual 7sect:an
2.2.12?7 lWe won't go into a lot of detail here, but 1let”:
what happens in line S88 as the value of MOVE increases. Ol
binary» notations below, we show only 12 bits instead of the 14
bits which B~ASIC XL always works with. The upper four bit:z are
alwavs zerca in this example, though, so they can be ignored.:

"
1
-r
P

n
)

I}
b
[¥x]

Bxl Tooikit

MOJE = = decimal, binary 0080 Q60a A@lt
Eitwise and with BPpGG 1111 1114
Binary result G000 GEGA @611

{decimal value aof 32

MOVE = 243 decimal, binary 8666 1111 @8i1
bitwise and with 8886 1111 1111
binary result 8088 1111 @&l

{decimal value aof 243>

MOWE 258 decimal, binary @001 9VGEE@ BE10
bitwize and with @88 1111 1111
binary recsult B0GAG B08a @Ble@

(decimal wvalue of 2)

Do »ou see what happens? UWhen the value of MOVE becomes greater thzn

235, the bitwize—and effectively subtracts 256 from it. In fact

could have coded line 588 thus: '
388 Let Move=Move+2 : If Move>255 Then Let Move=Moue-2S:&

But wusing the bitwise—and is faster yet, once you understand bitwizs

operators, Jjust as easy to understand.

And, as long as this explanation is too long already, let us note that
we could have achieved the same effect by using these two 1ine=s
instead:

588 Let Move=Mave+32

&?8 Sound @ ,Move&255,10,Vcume
However, the SOUND statement is inside a tight loop, and placing the
bitwise—-and in the loop would slow it down a bit.

688-658 There’s nothing really wery different from the bock wer=zion
here except the order of the statements. We thought this zcre-z iz
more readable. Wle hope »you agree.

768 Why didn“t we just code this line as follows?
748 I+ Bang# <> Bangl

Because the valuez of BANG® and BANG! could be 1, 2, or 2, depern- S
aon who hit what., Using NOT BANG8 and NOT BANG1 convertsz all wzlusz to
a boolean (zeroc or one) condition, which is more easily tectable
I¥f you prefer positive logic, you could change 748 and all follow ng
references to BANG® and BANG1 to this:
748 Bang@=S5Sgn(BangB) : Bangl=Sgn(Bangl>
741 I+ BangB<>Bangl
(Recall that SGN() of any positive number is one, as we want hers
778 See line 740, above. This line lcoKs strange, so let‘s transiz-=
it into English: "Bump the score of the player who did not get hang
by one." 5Still confused? Then substitute the following for line 774
778 14 Bangl=8 : Bang{l1)=Bang(1)+1
771 Else : Bang(@)>=Bang(@>+! : Endif¥
But, if you're willing to struggle with the 1logic a bit, »ou o 11

conclude that our original line 778 achieves exactly the same r
with less cade.

i
(]
8

BXL ToolKit Fage =

e
TR}
1]

gee

878

710

288

£

ame thing again. Remember, NOT BANG8 i
t o=z

s a logical expressiaon,
1t n only take on numeric values of zer

o and ane. Cute?

<

-
L%

Aancother casze of a logical expression being used toc derive a
numeric value., I+ SCORE(@®) really is 1less than SCORE(!)>, then
WINNER will receive a value of aone. Otherwise, WINNER will bhe zet
to zero.

Technical note: Most languages support the notion of TRUE and
FALSE logical expressions. Unfortunately (?), many restrict their
use to places where a conditional test is being made. Howewver ,

B&SIC XL, in common with many, many other (but not all!) dialects
of BASIC, allow you to treat TRUE and FALSE as numeric valuessz. E=
careful, though, in some Microsoft (and other?) BaSICs TRUE is
given a wvalue of minus one (-1) for reasons which are mired in
history. <n.b.: BASIC is not the only language which allaows
logical expressions to produce numeric values. C and some
versions of Fortran allow similar usages.?

and 938 See how neatly we can use WINNER now that we Know it has
a value of either zeroc or one?

In English wou read thiz line to say: "As lon
Jorystick trigger is pushed, Keep looping.”

)
[0
m
3
m
~+
g
Dd
)

Page 18 BxL Too kit

2.3 PICOADYV

In addition to being the longest program on the TooiKit disk,
PICO-ADVENTURE is also the oldest. It was one of the first masor
programs we wrote for BASIC A+ (back in 1¥81-82) and is given hers
with only minimal modifications, even though it could probably use
many of BASIC XL's new statements to advantage. Neverthele
PICO-ADVENTURE <(which nrname was intended to imply that it iz emal
than a Micro-Adventure) is still a reasaonably well-writt
well-structured program which deserves more than a cursory glance.

For all of its =ize, PICO <“as we shall call it from now aon? conly usesz
about half of the memory available when you use BASIC XL with DOS =L.
If you feel =zo inclined, you may retain the structure of the program,
replace room descriptiones and object actions, and thus produce wcur
own adventure. MNothing could please us more. In fact, we would laowe
to see your results,

One last warning before we start looking at PICO a block at a time:
Why don“t »ou RUN and play it before reading this secticon. In
studying the program, vou will of necessity see the <cecrets of the
game, which will destroy the pleasure you will get from winning <or
losing) gracefully.

Because this program iz so large, the best we can do is describe
blocks of lines. We will delve into detail only when we feel that
reading the program lines within the block won’t give wou encugh
understanding of their actions.

Finally, we present this program in execution order (not lirmne rumber
order), because »ou need an understanding of some of the <cubrcutires
before the main line cocde makes a laot of sense.

1086-11¢9 We use the question mark (?) abbreviation for PRINT a 1cit in
this program. It makes the listing smaller and allowes al) tirnes
to fit in the bounds of a 128 column printer. If vou are going o
list this program to an 8 inch (nominal 8@ column) printer, th9e

ends of some lines will either wrap or get cut off <f(dependinc =on
how your printer works)>. If your printer has elite (12 charac-zrs
per inch!) or condensed <(usually about 16 characters per incho

print available, we recommend that you set it in one of ‘thozz
modes before listing the program. All program lines will lizt an
cne printer line in condensed mode. Almeost all will list proger
in elite mode. (Note: an easy way to put your printer in one of
these modes which werks with most printers is to put its cortral
or escape code sequence right into a REMark line at the beginning
of the program.)

We also use some imbedded screen control characters in ocur qucted
strings, something we do not normally do with programs internded to

be listed by »you, our customer and reader. AQain, we felft
Justified wusing them here (instead of using a CHR$() sequernce.,
because they save so much room. We apologize in advance i ¥ thae

do funny things to your printed listing.

158 We put the initialization code up out of the way as a subroutine
s0o that the program looks better.

0
d
-

BXL ToolKit Fa i

8008-8188 Primar» initialization. GSome variables used as constants,

zubroutine acddresses, or counters are assigned here. UYarious
strings and arrays are dimensioned. Some sizee are arbitrarw
and~or cculd be made bigger for a more complex adventure (cne that
understands more nouns or wverbesl,. Onee that are carefullw
selected include VUS$ anc NS$, which are just long encugh to hold a
prefix character and a three-letter verb or noun. (See linez 1284

to 1388 and next paragraph.)

8119-8198 We build up the vocabulary l.sts . for the verbs and nouns.

8gee

148

928

1856

Page

Each entry in a list consists of a prefix character (CHR$(135),
but any value from 128 to 255 would have workKed), a three letter
name , and a single byvte which holds the werb or noun
number azcociated with this name. Note that the name’'=s number
corresporde to the last two digits of the DATA statement from
which the name was READ. For example, the first two entriezs in
NOUNSS, the noun wocabulary list, would lcokK ltike thiz {(where =z
number in brackets indicates a byte with that wvaluel:

(1831 L 1 C (1]

[1831 MO S (1]

Also, as we build the noun wvocabulary, we are setting up the
WHERE(> and SHOW arrars. A noun’s entry in SHOW() tell=z the
"yisible items" routine whether to show it or not. The entrwv iy
WHERE() tells where the item (noun) is located, according to the
following table:
If WHERE(noun—-number) is ... noun is located
less than 8 ... gone forever
8 ... with adventurer
1-992 ... in that room number
greater than 29 ... still hidden

-8999 The DATA statements which define the verbs (88xx) aznd n-unszs

(89xx) ., In theory, then, you could have up to %9 wverbs anz =%
nouns, each with one or more synonyms. Synonyms are simpl» 1. z%ed
one after the other on the zsame DATA line, the last one term:-:-=d
by an asterisk. The first synonym is the one shown by the cor-:-nd
line echo, inventory 1list, and visible items list, =o '+ 1=

spelled out complietely. As noted above, nouns alsoc have T
initial WHERE and SHOW values listed here. The last entry 1n =3ch
table is terminated by a pound sign (#).

Getting a KkKey one at a time from the "K:" device is zti1! -ne
best way. Much easier and more readable than PEEKs and POKE=.

This is Kind of a cute trick. Rather than print ocut a =pe: 2l
starting location message, etc., we simply tell our mcovemznt
subroutine {(starts at line 7888> that we are in room number 7 =zxnd
that the wuser just asked us to go West. We also note that rzom

number 3 is West af the current room. Then we GOSUB to do the
movement and (PRESTO') ewverything comes up right for somesbod. ho
Juset walked into Room 3! (Much of this will become clezrer

later...Keep reading.’

Again, we could have coded the subroutine at line &@41
in-line here {(since it is called only once), but this mak
program so much more readable. Besides, wait until »ou =
that subroutine does.

o

.

1

N
[ANTH]

ror

i+

1d

T
.
1

~+

12 BxL Tooitit

4888-6199 Special actions processing. In man» adventure games,
including this one, certain actions must take place at certain
times andsor after a particular number of turns have passed =ince
some other event. For example, in PICO, the effect of eating the
mushrcoom wears off after 4 turns. This time pericd iz countec
down in the wariable CRAZY, and lines 4816 and 4038 reflect thic,
Three other zuch variables, CHARM, TORCHFIRE, and HUNGRY arec
similarly aczounted for here. Note that, ‘n lines &18R to £1483,
these counters are never allowed to become less than zero. One of
tnem, HUNGRY, crcles from 26 down to zero, over and owver,

1116--1198 Thi=s iz our get-a-command routine. We only allow a <ew
characters to get through., ~I11 others are ignored. Note that the
variable OK iz uszed both as & flag and as a counter to the current
character within RESPONSES. If the user hits RETURN ¢lipne 11zZa:
we get out of the WHILE lcop by simply setting the OK +lag to
zero., Cute,

In line 1148, we only allow back spacing to the beginning of the
command twped in so far. And we special case inverse video =pace
~KEY=148) for szafetv’s zake, Finally, when we have masked al)
characters toc be upper case and non—-inverse video, we make <ure
that the user typed an alphabetic character. And, last but not
teast, we limit the user”s response to 15 letters. That'= more
than encugh “as we will seed,

12008-12%8 ke parse the user’s response into verb and noun parts. Or
at least we try to. Lines 1215 and 1250 strip off leading =spacs
“line 1218 guaranteed that RESPONSE$ would contain at lea

wmooan

something or thece lines might generate errors). The wvertbt
presumed to start at the first non-blank character and continus
the next following blank. (If there isn’t a verb, we qgo back
line 1888 and get another response.> The noun is assumed tco
everrthing atter the blankis) which follow the verb.

T i
[x]

e

Again, note how the search wvariables, VS$ and NS$, were carsfuily
dimensicned to 4 so that they could hold our separator charzzter
and the three signiticant letters of a verb or noun. (Do »cu ===
how you could easily increase the number of significant letter:

"
e

a PICO vocabulary word?)

Lines 1286 through 12%@8 allow for the special case of & =z -3l=
letter rezponsce indicating a direction to take. Can »vou zee hHow
easy it would be to add Up and Down to our list aof ==ziid

directions?

In any case, we come out of this block with the variables NOUN znd
VERB holding numeric values which represent the action requested
by the user. <(See the explanation of lines 8006-9088 for det:z:)
on what the numbers mean.?

13868-13386 Pretty simple. I¥f we didn“t find & valid verh, =zar =
Ditto for 2 noun. 0o »ou see .why we tacked * is.” on
RESPONSE$® in line 12167 1f the user tells us to EAT GORP, *‘he
variable NOUN$® will be set to "GORP is.” Maybe a 1little ‘oo
tricky?

BXL ToolKit Fa

0
hd

—
L

1488-1514 One of the neatest things about PICO is that it telle

s wiou
what it thinks vou said. We“ve plaved adventures where we twped
in “GET SNARE" only to have it tell »ou "You got it, but it bit
¥ou. You‘re dead." How were we suppoased to Know that SNA meant
"snake" to that game? In PICO, if vou type in "NIB MOS", the qame
will tell you that it is trying to "EAT LICHEN". A nice tauch, we
think.

1528 and 20880-2128 There is a bug in BASIC XL which has existed since
the earliest wversions of Atari BASIC. We’re afraid to fix it,
because there may be programs which depend on its action! a&anrwar,
the bug iz simple: if you GOSUB to a non-existent lire, the
GOSUB iz pushed onto the run-time stack before the erracr is
discovered. Subsequent RETURNs can then end up going back to the
wrong place(s), We avoid the problem here by GOSUBbing tc a known
good line (2080).

Then, at 1line 21688, we play a little bit of magic. Do »ou =zee
what line number we try to go to? If the wuser requested werb
number 7 and noun number 2, we will try to GOTQ line 174Z4

Suppose, though, that line 17820 doesn’t exist (as it dcesn’t in
PICO). Then the TRAP 2110 is activated and we GOTO line 17GES

instead.

Why? Well, as PICO is written, trying to BURN MUSHROOM will give
us wverb 7 and noun 2. Since line 17828 doesn’t exist, we end up
at line 1708@, where OK is set to NO so that the message, "That
didn’t make sense!" will be displayed. Since most items won”t
BURN, this provides a convenient method of processing al) z=uch

non—-productive requests the same way.

1680-14180 This ELSE clause was started by the IF of line 1S1a, The
direction abbreviations (N,E,S,W)> produce verb numbers of lezs
than zero (-1 through -4). Once you understand the rcoutines at
line 7868, this part becomes easy.

7880-7858 The variables NORTH, EAST, SOUTH, and WEST are alread. =&t
up by the time we get here (we’ll see how in a moment?, =o all
these lines do is put the proper value into GO. And what'= =&

"proper" value? Keep reading...
7188-7198 When we get here, GO can have one of four meanings:

I 60 is ... we will.

negative ... drown
zero ... do nothing {(direction unavailable)
1-99 ... go to that room number
166+ ... do a special action

The "special action" trick is a neat one, uniquely available conlyw

in BASIC XL and its brethren, because GO actually designatez the
line number of the subroutine to GOSUB to perform the action!

Page 14 ' BXL ToolkKit

7260-73%8 And here s where we get the values that end up 1n GO
“fter we have moved to another room {HERE=GO in line 71d4@:, or
evern if we haven’t, we RESTORE to the proper room description
(line 728@, alsc uniquely BASIC XL, etc.>. We READ in the lines
of descripticon (am equal sign on the end of a line indicates mare
to follow? and then, in line 73068, READ the four directione,
NORTH, EAST, SOUTH, and WEST.

Isn“t thies neat? LookK at lines 3814808 to 30185, Just by the line
numbers, we kKnow that this is the DATA for rocom number 14
(360006+16%10), The description is 3 lines (each in gquotes)> long.
And the cconnecting rcoms are 15 to the NORTH, 12 to the WEST. EBut
lock at the "connections" for SOUTH and EAST: both get a value of
28144, That means that, if the use asks to go SOUTH or E&AST from
this location, line 7138 will end up doing a 6GOSUB 38184. =c line
38184 is actual executable code (not more DATA) and the poor quw
getse zapped by a truck.

Examine some of the other DATA statements in this range. pMote how
easily we drown adventurers (connecting "room number" of -1 or
bar them from proceeding <(connection wvalues of zerc). It° s
downright easy to add rooms and conditions to this game!

1868 Believe it or not, this is the "end" of the praogram. Ewerrthing
after here is a subroutine. ®AiIn‘t structured programming neat?
Yeah? Then why didn’t we use an endless WHILE loop instezxd of
this old-fashioned GOTO? Sigh.

With all the maxin-line code described, we proceed to <come of the
subroutines not »et discussed.

7568, 768608, 7788 Three useful little routines, for when the user
for something not available (7568), uses something he doesn’*
(78688@), or dies gracefully (7708).

oy

LA
[T}
<

it

i
Ly
(]

7806 Four entry points provide delays of 1, 2, 3, or 4
thanke to the clock ticker in location 20.

7988 We display the stuff lying around on the ground. Remember, =:

Lia
if something ics located in this room, we don‘t tell the uszer
unless its SHOW() +Fflag is true. This little nastiness mzlesz
PICO harder than it would otherwise would be. You could ewoand

this in your own game(s) as you wished.

Finally, we get to the WERB and VERB/NQOUN action routines. FRemember,
a VERB/NOUN action starts a line 10060+18080*UERB+16*NOUN. With this
formula <(and with line numbers 188088 to 29999 available) you can hzaue
20 different verbs (if they are numbered starting at zero) ang %7
nouns. Changing the multipliers <(e.g., makKe it SBOx*VERE+ZA=HOUND
could change those ratios andsor make more lines available for
particular actions.

Also recall that a YERB (alone) action starts at 10000+1800*VEFE, zand
VERBANOUN acticns specified end up at those VERR alone lines=s.

We do not want to (nor do we feel we need to) devote the space o

E)
complete description of all the possible actions. Instead, we wil]
zingle a few out and leave the rest to you as an exercise.

BXL ToolKit Page 1S

13688-13173 These are the actions taken when the uzer asks to LOOK at
something. Let"s zee what happens when heszhe asks to LOOK
JUNKPILE.

First of all, if Golem isn’t in the right room (line 13178, haw
can we look at it? The rest of the responses depend an the uvalue

of JUNKCNT, which was initialized to 3.

If JUNKCNT is not zero, then we let the user find socmething in the

pile. What hesshe <finds depends on the value of JUNKCNT iline
13172, The item{(s) thus found (item numbers ¢, 3, or 8, in that
order) are made wisible by giving them a location in the
WHERE()> array <line 13173). Recall that ail three of these items
received an initial location of lee (hidden) in the
DATA statements of lines 8988 to 89%%2. Note that changing
WHERE () is all that is needed to cause the visible items print

routine (lines 7?88-7978) to make it show up.

I+ JUNKCNT i= zerc {(all three items have been found), thern we zare
sent off to line 130688, just as if we had typed LOOK BOAT iwhich
would cause the routine at 1line 13156 to be executed, it it
existed).

Line 138088 starts with a cute trick: If the user tvped in just

LLOOK, the program pretends he/she really wanted LOOK PLACE. Line
128a1 is pretty straightforward if you Know how to read it: "14
the Golem isn” t carrying the requested object i F

WHERE (NOUN) isn‘t zero) and Iif the object is not in thiszs room
(WHERE(NOUN)> is not the same as HERE), then we can’t look at it,
s0 askK the dummy HOW we can do it."

Finally, 1line 13882 simply gives a nice bland message about fhe
object. If the user typed just LOOK <(with no noun), then the
message refers to "this place." Not exciting, but it works.

16800-16169 Almost every adventure you try will have some =ort of

secret word or phrase which vyou must SAY to unlock the myster. zz,
In PICO, we hint at that ability by providing you with a MAGIC
LAMP (in the junkpile) and putting a message on the bhilicczrd
which has a message in quotes, usually a dead giveaway that the
phrase ("A LAD IN BAGHDAD" in this case) is the sought after mzagic
word(s).

In fact, if rou use the command SAY A LAD IN... before you get ihe
lamp, we even qive you a clue (Ilne 1616865 that you need zomething
else before the magic works.

But all of this is in vain. We borrowed a page from Sesame Sireset
and put the "fix" in: all vou get for a1l your trouble in this
game is a peanut butter sandwich. (To add insult to injurs, it
doesn‘t even fill you up'! 0OFf course, that‘s because the "I'm
hungry" message is trying to make you eat the mushrcom, ancther

trick cadged from a children’s ‘story.?

That‘s about it for PICO. <(Isn’t it enocugh?) We hope you will turn

it

into your game and share it with us all.

Page 146 BxL Toolrt

2.4 LEM

This program is »et another incarnation of the classic lunar lander
game. The principles of this game haven’t changed since peuple <irst
ztarted wusing computers to have fun, even if trey were wusing
time—-sharing or mainframes and mini—-computars back [y those
prehistoric dayrs. For example, we have a book (fashioned from clav
tablets, we think) dated 1975 (A.D. '!!)> and called "What to Do aAafter

You Hit RETURN g~ P.C.C.”s First Sook. of Computer Games" which
includes no less than two different lunar lander programs. They were
played nn H.P., minicomputers with teletypes (you Know...at a maximum
ot 18 characters per second, and no graphicsy.

So what‘s different about this program, and why should we dizcuzes it?
Well, it's written entirely in BASIC (big deal, s0 were those 1775
gems), And it uses pretty graphics (that’s a little better). wnd it
runs in real time (whazzat? impossible!).

To play this game, plug a jorstick into socket number 1 (STICK(8) in
BASIC) and RUN the program from disk. You can play on two levels,
beginner or advanced, but we recommend you try it first as beginner,
s0 simply push the jorstick button. You will be presented with a
moonscape, & bar at the left showing your remaining fuel, a landing
pad <(which will biink>, and an odd-shaped ship <(compiete with
antennae, legs, etc.? which you will (try to) control.

To move the ship left or right, simply push the joystick left or
right. Be careful! The effects of such pushes are cumulative with
time. Gentle taps in the appropriate direction work best,

To fire your retro-rockets, push the Jjoystick button. I+ vaou do
nothing further, you will probably crash <(albeit perhaps =zlaoiilwr,
That’s because there are six possible thrust settings on the LEM. +au
increase thrust by pushing forward on the joystick, decrez
pulling back. MNeed we tell you that greater thrust eats fuel fa
(If you run out of fuel, you run out of thrust. Need we tell .z. tha
results?)

points. Too fast a landing results in a crash. A landing of modsr ate
speed gives you a bouncing good time. And a near perfect get:
applause and cheers from the crowd. (Which ignores the fact
sound doesn’t carry in the vacuum on the Moon. Oh, well, mz.
they’re back on Earth?) You get 258 points for a great Jlanding,
points for a bounce, and credit for remaining fuel. You alszc
bonus points for the actual speed of your landing and the narrcurzs
of the pad you landed on.

If vou manage to land (or even crash) on the landing pad, »ou et
+

,
I B
W

Pt
et

we e
[QIO &
m ~+ D+ C

It’s a good game. We’ve played it many, many times, and it’'s st
real challenge to score over 2508 points in five landings (a =ztancar
game?> on the Advanced level. Before perusing the explanation of the
workings which follows, why not try it yourself a few times.

This is a big program, but it is very well self-documented fwith toth
REMarks and self-explanatory variable names). As with PICO (=sect on

2.3) we will discuss this game in blocks, concentrating on the
non—-obvious features.

BXL ToolKit F s

o
%]
h(
—
|

1806-12%86 After waiting for the plarver to let up on the

Jorstick

button, we present himsher with a menu and some briedf
instructicn=. LEVEL ic set to zero for a beginner and cne for an
aduznced plaver. Notice how we position the arrow, basing it an
the walue of LEVEL. Also note how, after adetecting the fact that
the doyetick has been pushed, we wait for the stick to come back
to the center before continuing the lcop. If we didn't do this,
the arrows wenld +lick back and forth from one level to the aother

almost ‘oo fast to see. (Try it vourself. Remove line 113268, and
watch what happens.)

1308-17608 rlostly =imply initializing various arrars and strings. tele

will show later how theszse variables are used. Note how we chaoaosze
cne or the other zet of DATA in lines 1708 to 1728, depending cn
the lewvel of the player. You could have more than two levels
here, if »ou wished, by adding choices to the initial menu and
DATA for the acceleration values. :

Speaking of which: The first acceleration number is the force =¥
agravitr. In other words, the positive attraction inviting rou to
crash into the rocky <=surface. The other six numbersz are the
acceleration values produced by the various thrust settings., MNote
that, on advanced level, the lowest thrust doesn’t even cancel the
pull of gravitry. You can play with these numbers, but the game
works pretty well with the values shown.

1868-1838 These are some critical constants used throughout the game.

ke need to discuss them Jjust a little.

A POKE of any value to HITCLR clears the collision reqgisters !
"Mapping the mtari"). The YSIZE is the height of the ot
playing area (in pixels) in GRAPHICS 7+1é6. If you wanted to pla
with GRAPHICS 15+1é (available only on XL machines), you could
change this=.

'y
n
-+
— -
~, D

The lander cpaceship <(LEM) wuses player 8. Its flame i(from *th
thrust) uses player 1. They are offset a bit <(from the =
addresses of their respective players) to account for differesnczs
in their sizes. If you changed the appearance of the ship, o
could adjust Jjust ADRLANDER and ADRFLAME, and all would =t
work.

=Y

LANDER and FLAME are established just to save time in the tight
loops later on.

We display the fuel remaining wusing playrer 2. The "+
"+159" values are empirical——they match the line to the =
the playfield nicely.

1898, 3758 The limits of the once-per-landing loop. Big, isn't it~?

1908-2858 Look at all the stuff we have to set up each time! Most of

o
o
n)

thece wvariableszs are self-explanatory or nearly so. Especiall» i+

we tell wou that "pos" means "position" and "yel" me an =
"velocity". FUEL is actually fuel remaining, while BURN iz the
current rate of burn {(thrust). BURN is the number which iz
adjusted by moving the Jorstick back and forth,

CURRENTTHRUST matches BURN only if the button is pushed, otherwiszs
it is zerao.

-
(]

BXL Toolkit

2860-2140 We set up the fuel-remaining indicator. Rather than =
solid bar, we liked the pattern that $BDDB produced for a pair of
vertically adjacent lines within the bar. We replicate the
pattern wvia the MOVE of line 26%8. Note how this trick works and
use it in your own programs: If you initialize the first N bytec
of an area of memory, you can replicate those bytes via

MOVE area,area+N,(# of replicates N}

Another trick you might steal is our method of moving character
shapes from ROM to a plaver (lines 2188 to 2136), The usual
character <cet scstarts at $EB8686, but we bias it by -%$188 because
screen byte values are not identical with ATASCII values. Recall
that each character in ROM occupies 8 byrtes, and vou should get an
idea how this works. After the "fuel line" is ready, we move it
to the left side of the playfield screen.

21460-2518 We make the playfield look pretty. After picking the size
and width of the landing pad, we draw the moonscape in three
pieces: From the left edge to the pad (line 22%98), the pad itzel¥

(2318 to 2348>, and from the pad to the right edge (23&48:. The
subroutine at line 3988 draws the jagged mountains. <(Note how the
mountains are guaranteed to get no more than 28 units high., I¥
ALT gets up to 28, B8.96%ALT immediately drops it back to 19.
Cute.?

After putting a few distracting stars in the sky, we blink the
landing pad (that’'s one reason it was drawn wusing a different
COLOR than the rest of the moonscape) and then give it the same
color as the rest of the mountains.

26608, 2778 This WHILE loop constitutes all the actual movement in the

game! Do vou see how few lines there are here? That'= the
primary reason the game can run so fast, thanks to the externziuve
set up which we have done. And what terminates the movement lcaop?

Look at the five conditions in the WHILE statement: (1) Hitting
the landing pad. (2) Hitting the mountains. (3) Going off the
left edge of the plaring area. (4) Going off the right edge. <%
Going off the top of the area. '

2618-2628 We move both the lander and its thrust flame intc positiaon.

For vertical movement, we actually MOVE data from the strings we
set up (from the hex DATA). We do this because it is faster than
PMMOVE, which must move S12 bytes in single line resolutiaon (25&
brtes out to a buffer and then back in, to avoid overlap

problems). For horizontal movement, PMMOVE is just as Ffast as
POKE, so we use it.

2638-2730 After adjusting the BURN rate as requecsted, we =&t
CURRENTTHRUST to either zero or BURN, depending on whether the
button is being pushed. Since fuel is used at a rate equal tc 4.1
times the thrust, we wuse an intermediate variable {L0OSS) to
accumulate thrust in units of 18. When the LOSS exceeds 18, we

use up a unit of fuel and reflect that fact in the fuel line cn
the left side (lines 2718 to 2736).

27408-2768 The horizontal velocity is easy: we just accumulate the
horizontal stick pushes in one-twentieth of a unit increments.
The vertical velocity is also cumulative, but it uses the element=

BXL ToolKit F

age 19

of the THRUST arrar for its acceleration wvalues. And, vou

may

recall, the wvalues in THRUST() depend on whether you are plaring

at beginner or advanced level. Finally, after wupdating the

horizontal and wertical positions, we makKe an appropriate rocket
sound.

2888-3868 For really great landings, we bring out the craowd, Note

the way we assign the bonus points in line 38é8@.

3076-3258 For so-so landings, we bounce the ship. The number of
bounces depends on how hard the landing was. Note how we choose
the frequency for the plopping sound from the PLOP() arrasr.

3278-3658 A crash landing. We allow pieces of the ship to =spew al]}
over the place. Up to 18 pieces are given independent
positions——X{() and Y()--and velocities——XVEL()> and YVEL()>. Each
follows the laws of physics until it goes off the playving field.

3648-3748 We display the score for this landing as well az the
cumulative score so far.

3776-3878 After <five landings, we give the grand total. Ilde reztart
the game (wvia a simple RUN) when the Jjorystick button i pushed
(which is why we waited for the button to be released up there at
the beginning).

There it is. A practical reali-time game written entirely in EBASIC xL.
There are a lot of unnecessary frills (e.g., the wvarious twvpez of
landings?>, but they add to the overall effect of the game. Tr» this
on »your Apple-cwning friends. They’11 never believe it was daone
entirely in BASIC.

Page 20 ‘ BxL Toclkit

2.5 GTIATEST

The earliest Atari computers had a graphics chip called a CTIA. About
two »ears after their introduction, though, Atari started shipping all

4880 and 888 machines with a newer chip, called a GTIA. tAl
XL computers use the GTIA.)> The most significant difference wmetween
the two chips is the GTIA’s abitity to accept commands for three

additional graphics modes, GRAPHICS %, 106, and 1! in BASIC parlance.

For reascons we at 0SS find hard to understand, little in the wa» of
commercial software has been produced which uses these three modes.
True, compatibility with older machines is an issue, but the cost of =
CTIA to GTIA upgrade is nominal, at most. And if »you must maintain
compatibility, why not provide two versions of a program? Well, cne
argument for not doing so was that, according to Atari literature
there was no way for a running program to tell which chip wa
installed. Would you believe Atari literature?

o

We thought not. It turns out that a workable method is a bit jinvaolue
but more than doable. The subroutine +from 1line %888 wup in thi
program demonstrates one way which we Know works.

(W

The principle is as follows: If you are in a text mode (e.g.,
GRAPHICS 8> and you turn on one of the GTIA enable bits (the upper fwo
bits of GPRIOR)>, then the collision detection mechanism does not work
between a player and a character displayved in the modified text mode.
As a sidelight, the characters become unreadable under thece
conditions, but this in itself is not detectable by a preogram.

We believe this subroutine (and its sample calling program) are faif\y
self-explanatory, but we will make a few comments.

2100 As long as we are testing, we might as well PRINT zomething
which makes sense.

?21386-9158 All of this ensures that we will place a black bar tplaver
@) right over the word GTIA. ‘

71468-9218 We turn on the GTIA bits, wait for a clock tick, clezar thnaz
collision registers, then wait at least two clock ticks.

9220 If $DBG4 contains any non-zero bits, it means a collision wias
detected and that the machine under test does not have a GTIA.

We hope that some of our users, either of BASIC XL or other langua
will see fit to produce some programs which take advantag
GTIA graphic modes when possible.

D

BXL ToolKit Pa

i
i
T
ra
[y

2.6 CIRCLES

We at 0SS cannot take credit for discovering the algorithm wused in
this program, but we do thinkK that we have made it a little more
ueeful.

The program’s workings are certainly self-explanatory up to line 1598,
It is the subroutine starting at line 1488, which acztually draws the
circles, which needs a few comments.

The principle involved is simple in theory: calculate the sine and
cosine of angles which get increasingly larger (until they reach 45
degrees>, and plot a circle by reflecting these values in all octants.

The trouble is, if we use conventional means of generating cine and
cosine values, drawing a circle takes so long we might want to take a
nap. The trick here is an algorithm, invelving the wvariable

DELTA which approximates the sine and cosine values so close as to be
indistinguishable when a circle is plotted on an Atari-size screen.

When we enter the subroutine, we assume that XC, YC, and RADIUS are
already set up. Then comes the fun.

1678 This begins the real work. The formula for DELTA ics magic.
Don’t question it <(unless your math is a whole lot better than
average?. The values for X and Y are more obvious: We begin at
an angle of zero degrees, so the sine is zero and the cosine |
ocne. We will plot the points where lines parallel to the axe:
intersect the circle.

[T

U]

146880 This allows us to get to 45 degrees, where the sine and cozine
values are identical.

16990-1788 We plot the values in all cctants. The cute trick we =zded
here was the TRAP statements. Ewven if the <circle is complet=
outside the bounds of the playfield, we can PLOT it in thecr ..
least! The beauty of this method is that all of those po o
which fall within the playfield will be plotted, no matter ho r2w
or how many they are.

—

g
(11 S

1806-18486 This is the algorithm at work. Again, it’s partly m:z.
: but you can sort of see how it works. X is always increassc
one, so we never plot the same point twice. Whether or not Y
decreased by one depends on the value of DELTA (which in ¢
depends on either X or the difference between X and Y) as its
changes. Those of you with a mathematical streak max
calculating the arc—-tangent of X/Y, to see how cloze
algorithm is.

T 0

i
T
- u
ST |
3

,.
o
— K
[X1)

-

Once again, this subroutine is one you can use in Your own pProgr ams.
Try it, it works.

Page 22 BXL TooikKit

2.7 DISKIO

This is ancther program which in and of itself is only marginally
useful. Its main purpose is to present its primary subroutine (lines
@809 and greater), which you may use in your own programs.

~ASs you may or not be aware, when you ask BASIC to do 1,0
(Input/Qutput> to or from most devices attached to your computer
vincluding particularly the disk drive), what actually happens is

-

qui te complex. BASIC interprets your request intoe a call to
CIO «Central! Input Output), which in turn determines what device yeou
are uszing and wvectors to the appropriate driver routine. We assume

here that CIO accezses FMS, the File Management System for the disk,
usuyally called DOS (Disk Operating System).

Finally, FMS makes a call to SIO (Serial Input Output), the routine
which does the actual physical reading and writing to the device. In
the case of the disk drive, this involves the actual tranzfer of =

zingle sector of 128 bytes (or 2546 brtes in non-1856 double dercity).

Mast BASIC programmers seldom--if ever——have need to read or write =&
physical disk <sector. Writing is dangerous, since disturbing the
format of portions of a sector can destroy DOS’s ability to manage the
disk for ryou. Reading a sector, though, can be informative,
especially i¥f you are trying to either understand DOS or find "la=t"
information.

However, should you ever feel the need to directly read or write
sectors, the subroutine we provide here will do the work for vou.
Just so you can see how it works, we have included an interactive
program which reads selected sectors. (We took our own advice and
didn‘t allow it to write sectors.)

The set-up program, all lines except the subroutine starting at line
Y608, is fairly self-explanatory. It simply asks the needed quections
before «calling the actual read-a-sector code. It then displarz the
contents of the sector in an easy to read hex and ATASCII dump format,
Only a couple of points are worth making regarding this part.

First, we have arbitrarily used $468 through $&FF as our zectaor
buffer. This is the infamous "page é" which is so often overused. I+
you would 1like to avoid conflicts with other routines using pags &,
feel free to Jlocate the buffer anywhere else <(e.g., within =
DIMensioned string). Second, note the way we print out the dumpsz.
The HEX$() function alwars returns a four-character string; Gtut,
because we want only the last two (least significant) digits, we
assign its value to a temporary string from whence we can print cut
only the last two characters. Also, we avoid problems with the
ATASCII display by prefacing every character with the ATASCII code for
ESCape and ensuring that only seven bits of the characters wvalue are
used in the display. The former mechanism forces E: (the screen
device here) to display what would otherwise be cursor control codes,
etc. The latter "fix" ensures that RETURN ($9B) won’t be sent to the
screen, a desirable feat since it overrides even the ESCape sequence.

And now, before describing the code in the sector access routine, we
need to examine what SI0 expects to be where when it is called.

BXL ToolKit ' Page 23

S10 and the Device Control Block

The entry point to the SIO calling routine is located at $E459. Idren
SI0 is called, it does not care what values are in the wvarious CPU
registers (A,X, and Y>, but it insists that a block of memory kKnown a=
the Device Control Block (DCB)> be properly set up. There ic only cne
DCB used in the Atari 0S8, and it begins at location %0388 (748
decimal). Its contents are as follows:

Location # of brtes Descripticon

$0300 1 Physical Device ID
$63061 1 Device Unit Number
$03682 1 Device Command Character
0363 1 Data movement control (on call:
SI0 Returns Status (on exit)
0304 2 Buffer Address
$83646 2 Timeout value
$63482 2 Buffer Length
$6306A 2 Auxilliary Information
Some of those brief descriptions need & little explanation: The

physical device ID is something not seen in Atari’s 0S outside of SI0.
Aptari has assigned each standard serial peripheral type a wunique ID;
disk drives have an ID of $3!1 (71, not to be confused with $81>. The

device wunit number is more familiar as, for example, the drive number
(‘n’ in “‘Dn:7).

The device command is again unique to SI0. As we shall see in the
next section of this manual, there are many possible command
characters, though they tend to be normal ATASCII letters. Far

example, the command to read a sector is "R’ while write is “W'. Naote
that for versatility disk drives support a second write command, "P’,
which means write sector without verify.

The byte at $363 has two uses. When you call SIQ, it must contain %44
i¥f you wish to obtain data from a device or 88 if you need to send
data. A few device control commands need to neither read nor write
data, so they use a value of $88 here. On return from SI0, the error
code value (if any) is placed in this location.

Buffer address and buffer length are similar, if not identical, to
their CIO counterparts. They simply tell SI10 where the data iz and
how much of it there is. One unfortunate point: ATARI did not choose
to include the data length in the packet sent out over the serial bus.
This means that the device and SI0O must agree on the length of data
being sent. <(Example of the consequence: Atari’s 0S8 always sends
data to a printer in 48 byte hunks. Wouldn’t it have been simpler i+
0S could have sent any number of bytes, from 1 to say 253, to the
printers?)

Finally, the auxilliary information is sent unmodified to the device,
along with the command. Each device chooses what the auxilliary info
implies, but for disk drives it is always the sector number.

The Sector Access Routine
Actually, now that you have seen what SIO requires, this subroutine

(lines 96088 up)> is almost self-explanatory. Once again, though, a2 few
things need clarifying.

Page 24 ' BXL ToclKit

9238 No real reason for this, except that the resultant listing looks
zo much neater.,
9248 We usze ASC("1") to emphasize the fact that aAtari, for szcme

reason, used printable characters for most of the SIO corntral
information. {As & qQuess, we would say that they did this to make
debugging using a serial data analrvzer easier.)

9278-9328 We only allow the values we said we would. Ewverything elsze
ie fatal. Not fancy, but safe.

9330 A little sneaky, but we have already verified that CMD equals
either 1 or 2, so anly a legal! value is possible here.

9358 The timecut wvalue is arbitrarily large.

?368-9410 Again, we allow only legal density values. Note that (258
denzitv-and-a-half is considered Single density by thiz routine.

9428-9478 Validating the sector number. If you are using & 1838 in
density—and-a-half mode, »ou obvicusly need change the 728 walue
to 1848, instead.

?488-9498 This ics such a neat trick! Because BASIC XL allows us tg
specify that the count of parameters will not be pushed orn the
stack, we can call machine lanquage routines which do not expect
values in registers without any need for an intermediate routire!
So simple it‘s almost hard to believe.

95968 As advertised.

95186 Just in case the caller is using a routine where he wants ths
count of parameters pushed!

Technical Sidelight

There are two sectors on a standard Atari DOS disk (versicon 2.9z znd
its derivatives, including 0S/A+ and DOS XL versions 2) which wou maw
read or write at will, since they are "invisible" to DOS: =zector =

and sector 726.

Sector 728°s availability has been documented before: DOS "managesz"
sector numbers @ to 719, but the disk drive understands only sector

to 72@8. DOS has been "fixed" to think that sector @ is always in u \
but sector 728 remains outside its Ken. Sector 3 is a quirk: it Q=
the last sector of the traditional 3-sector bocot process. But, for
some reason lost in programming legend, it turns cut that none of the
disk boot code used by D0OS is present in sector 3: sectors | and
contain all the boot that is needed!

o
e

A word of warning, though: if vou erase, write, modify, or rename the
DOS.SYS file, sector 3 will automatically be rewritten by DOS ¢t
thinks it needs to reestablish the boot code). So, if you chocze to

use sector 3 for your own purposes, be sure to do so on a disk which
either never receives a DOS.SYS file or which has one which vyeou fesl
is reasonably permanent.

BXL ToolKit

n
DU

i
D
[aX]
N

2.8 CONFIG

This pragram was written in response to all of cur users whao
wanted to Know how to read and/or change the configuration
information which all true double density drives utilize. The
coanfiguration scheme, often called the config block, Wa S

developed by Percom Data Corporation, the producers of the first
commercially available double density disk drive for Atari

computers. Since that time, all other manufacturers except Atari
have followed the Percom lead. Strangely enough, the Percom
scheme was in turn developed from the ill-fated atari £15, a

double dernzity drive which never saw retailers’ sheluvezs.

In any caze, the degree of double density compatibility between
drives of rival manufacturers in the Atari market is rothing
short of amazing. In those instances where one drive cannot read
a diskette written by another make of drive, the problem iz
almost alwaye related to the rotational speed of the motor
turning the disk. Adjusting that speed can often work wonders
with a diskette which otherwise produces only ERROR 144,

0f course, when Atari finally came out with their own "double
density" drive, naturally they had to invent a new standard. (]It
wouldn’t do to accept one begun by a rival-—-that would be an
insult to Atari’s dignity.? As a result we now have three
important diskette <configurations in the Atari world, which are
summar ized in the chart below.

Sectors Bytes per Total
Qur Name Style per Track Sector K Brtes
Single Density g1a 18 128 20
1850 Density 1858a 24 128 130
Double Density Percom 18 256 186
All drives use 48 tracks per diskette. In addition to those
shown, wvariocus manufacturers have also made drives wjith 28
tracks, two heads (i.e., 48 tracks per side of the dizid,
double-headed with 8@ tracks per side, and even 8" dizksz .:th
other strange and wondrous configurations. Since only 0% &+
version 4 (of all 08S D0OS’s) supports other than ordinary zinglie
and double density drives, we will not go into detail about *tr=zs
drives here.
- As of this writing, the following drives are Known to be capable
of understanding Percom-standard double density mode:
Indus Trak
Astra _ Rana
SWP NCT Turbo

and, of course, Percom

In addition, Amdek conforme to the software standard evern though
their diskettes are 3.5" (instead of the usual 35.25"). I+ rou
hook a 5.25" drive up to an Amdek controller (e.g., as a =econd
or third drive on the controller)>, then its diskettes will be
hardware compatible as well,

Now that we have all that out of the way, marbe we ought tc find
out just what the "Percom standard" is.

BXL ToolKit ' Pace 25

ra

The Percom Standard

For a drive to gqualify for that title, we at 0S5 feel that it must be

capable of all the following:

1. Read and write ztandard Atari 518 sinqgle density diskettez,

2., PRead and write double density diskettes with 48 tracke, 12 zectorsz
per track, 294 brtes per sector. Peculiarity: because of the war
Atari“s 0SS wants to boot, the first three zsectors of & double
dencity disk will hold only 128 brtes of data fexcess iz ignored?
and transfer aonly those 128 bytes con all 210 reads and writes to
sectors 1 through 3.

2. Be able to transfer an internal configuration block to the host
computer on request.

4, Be able to accept change= in that <same configuration black
sufficient to at least allow the drive to ke changed back and
forth between =ingle and double density.

5. Have that confiquration block ke readswritten by SIO commands ‘N~
and "0 f(respectively) and consist of 12 brtes conforming toc the
following table:

Brte # # of Brtes Description

1 Number of Tracks

i Step Rate

2 # of Sectors per Track

1 # of Sidee (heads)

1 Density (8=Single, 4=Double)

2 # of Bytes per Sector

1

1

2

td

Drive Selected?
Serial Rate Value
Micscellaneous (reserved)

L IR VIR Y R N) N W

—

Once again, a little explanation of some of those items is
Firet of all, ncote that all double byte values are not i :
&£582 lows/high order. The reason is historical: Percom wuses =z <30
CPU chip in their disk controller, and all &88x chips do double b-te
work in reverce of the &3582 manner.

"Step Rate” is not a meaningful number from cone manufacturer o
another. Step rate 1 might mean & millicseconds per track to
manufacturer and 20 milliseconds each to ancther.

"Number of =zides" i= a misnomer: it is actually the number of
minus one. Thus most drives will show a zerc here. Note that, .
theory, this number could have any value., For example, a hard dJdizk
drive might show a 4 here (five heads).

~+
]

The only agreed upon values for "Density" are @ ("FM" recording mode:
and 4 ("MFM") recording mode. (ther values are possible Ffor =strarge
circumstances.

Some drives can actually be turned "off-line" by an appropriate walye

in "Drive selected." There seems little value in this, since thex can
only be brought back into the system by turning them off and back con
again.

The "Serial Rate Yalue" has not found any compatible acceptance. ~=
originally conceived by Percom, it would inform the drive what Lzud
rate the computer would uce for high speed data transfer. So +zar,

those manufacturersz offering higher speed transfers ‘have not used
bryte in any meaningful way.

BXL ToolKit = 2

0
IR}

M

r

Finally, the "Mizcellaneous" wvalue i= not--to the best of our
knowledge——being used by anyone fOr any purpose.

Mow that »ou know what a Config BlockK locoks like, haw can wou tell,
from socftware running in the Atari computer, whether a particular diszk
drive is z=et wup forr a particular density of dizskette? Equaliv
important, how can you change a drive’'s set up? If wvou want the
answeres to these questions, read on.

Reading and Writing the Config Block

s noted i Section 2.7, SI0 is a means of transferring cortrol and or
data between an ~Atar computer and a peripheral device via the
standard serial busz. Although the most common operationsz aon the bus
involve readirg (command “R’> and writing (commands “W° or P73, cther

commands are certainly possible. In fact, all devices are required tno
support a status (°8°) command, i¥ for no other reazon than =0 that
the computer can tell whether they exist on a given bus or naot.,

lhen Percom invented their double density disk drive, ther inuvent
their Config Block and, quite naturally, a pair of commands *to p
such a block between the computer and the drive,.

il
WL

=

The command to read & Config Block from the drive into the computer”

memory is "N’ (thinK of it as iNto the computer>. The command o
write a Config Block to & drive is 707 (think of it as Qut of tha
computer). Aside from the need to use these command characters=s, The

only differences between making an SIO call to readswrite a sector =rn
makKing one to read-/write a Config Block are (1) the length o+ -h
data, which is alwarse 12 brtes (instead of the 128 or 25& +for

o

W

sector) and (2) the auxillary bytes (used for sector number’ hazve -~
effect.

For example, then, to read a configuration block from drive | ST Y
buffer at location $888 (page &) you would need to set up =

following values in the DCB at the locations shown:
$360 331 Unit ID
$3681 $al Drive 1
-$302 #$4E ‘N’, read Config Block
$202 €40 see Section 2.7

$304 %08

E 3221 $5808, LSB first; buffer address
$3046 $6F

$08 1S, an arbitrary timeout value
$308 $4C

$00 12, length of the Config Blaock

And that’s it! A JSR (or USR) to location $E459 will read that &'~ -

right into memcry. If, of <course, the drive is capable =+
reading/writing Config Bleocks. Atari drives, for example, will ret_rn
an error 138 (NAK), because they do not understand the command. =

command given to a drive not on the serial bus will result - =
time~out error.

Page 28 BXL Too'- ¢

Our Program

The CONFIG.BXL program on your ToolKit disk is ver» long and seemingl«
complex. &ctually, the real work is done in a2 couple of =zimple
subroutines and the rest of the pragram is imply there to convert the
raw numbers in the Config Block into readable intormaticon and-or ta
ITow the user toc esasily change information in the block, Cnce
QA then, we will resort tc a description of only those narts zf =
program which we don't feel are self-expianatory.

a o

1888-1288 Mo=tly just =imple constants. Note that we will reag the
configuration tahkle into the string, Configtable$, rxther than
using valuable page six memory., Also note in line 1280 the wavy e
praduce screen control characters which will list an amy printer.

1248 This allows us to call system routines via USR() directl~. Se
zection 2.7.

D3

1276-1298 We will discuss these DATA statements later. For now, not
that 2ach line has 12 values (funny how that matches the size cof =
Contig Block)., MNegative values indicate bytes we won“t charge.

L

1338, 1928 Look at the size of this endless loop. We think that, in
a well structured program, a loop really shouldn’t get any bigger.

1348 Two ways to use screen controls in BASIC XL, thanks to the fact
that »ou can PUT to channel zero.

1438 This is one way to ensure that all the configuration gamesz we
are plaring here will take effect. When »you change a drive =
configuration, DOS needs to kKnow about it. Usually, one doez this
by calling & routine named DOSINI, which will return to wou after
reestablishing DOS’s internal drive configuration table. If o
don“t need the routine to return to you, simply force a z-ztem
reset by a Jump {of any Kind> to $E474., This =
exactly equivalent to hitting the RESET Key.

14986-15006 See, we can use our SI0 calling routine to do more *-ar

Just readswrite Config Blocks. In this case, we simply do 2 driuve
status call.

1688-1738 The status was okay, so read the Config Block. Hmm? Czrn
do it? Why did vou buy an Atari drive? ’

1758-18%86 Here is where we display and then {(optionally) changs ==
Config Block in a form readable by humans. Note how little of th
code is actually here; it is almost all in subroutines.

R

[} {}

19408-22286 Once again, we have a Keyboard access routine which avwcids
the wvagaries of the INPUT statement (see PICO.BXL for =z ful}
commented example of this same thing). In this case, we want anlw~

numbers in the proper range. It's easy if rou step through it.

BXL ToolKit Fa

1
]
m

(g2

4.0

2236-2598 Femember what we said about a handful of subroutines which
do the real wark? Here“s one of them. If you fcllowed aur
dizcusszion of the meaning of each brte of the confiquration table
{above?, »ou shouldn’t have any trouble following this code.
That’'s primarily thanks to the fact that all the pertirent wuvalues
have already been placed in variables with meaningful namez bv...

2688-2758 A very important subroutine. This takes the bytes af the
Config Bleck and converts them as appropriate. Note how we can
not wuse the DPEEK() function, thanks to the fact that the double
byte values are "backwards" compared to standard 4582 practice,

2768-2918 The oppozite of the previcus routine. TakKe the wvaluesz in
the wariables and stuff them into the bytes of the Conmfig Elock.
Again, note that we can not use DPOKE.

2928-3128 e really shouldn’t need to explain this routine, since it
is wirtually identical to its counterpart in DISKIO, described in
Section 2.7,

3136-3388 Here’s where we allow you to play games, if you wish. e
give »ou a menu. If »you choose one of the standard configuratiaons
(Single, 1a5a, or Double Density), then the approprizte
RESTORE allows us to read the standard configuration information

from our DATA statements. Once again, we note that zome bwtes zre
never changed: Step Rate, fAcia, and the Miscellany locaticns.

33%8-39086 Anything goes. You can tell the disk drive’s controller
that it"s connected to a drive with 138 tracks, 204 bytec per
sector, 12 heads, or whatever. Some controllers will beliewve wiou
and try to do as you ask. We sincerely hope that you have a blank
or trash diskette in the drive when you give such commands. Othar
drives will only accept a 'limited number of configurations,
ignoring much of the information you send them. For examplse,
Indus drives allow only the three standard densities.

Note how we re-read the Config Block after writing. This i= ¢

ensure that we haven’t Jlost control of the drive. (Wdith =zuom

T

drives, you can de—-select them, and they will cease responding =«c
anything.>

That's about it,. I+ »ou are confused, try playing with the program
with a copy of a listing in front of you. It should become a It
clearer,

Page 2@ ' BXL Toolkit

2.2 PHONE

PHONE.BXL i= & +airly large but well organized program which iz =
simple but very efficient phone number 1list organizer. It will
maintain a list of first and last names and phone numbers, lkeeping the
list "sorted" by last name. Thanks to the "sort" scheme adopted, it
finds a phone number in less than a second, no matter how many rmames

there are in the list, when given a last name to work with,.

Ite other advantage s that it s easily changed and expanded to
provide, for example, a mailing list program. Or perhaps a list of
books im your library, The possibilities are limited mostly bv wour
willingness toc tackle its code and bend it to your purposzes.

Again, this program has been provided in response to numercus reguests
for a complete explanation of how to do random—-access +ile 1.0 wunder
pos 2. We hope that this program and its description will satiz+fw
mast of these requests. Before exploring the program, though, there
are several technical considerations which vou may enjoy considering.
If vou get leost in all the technical stuff, skip down to the program
description and come back and try to understand the rest later. It
is worth understanding.?

Sequential and Other Files
Perhaps the biggest flaw in Atari DOS 2.8 (and all ite derivatives,
including 0S/A+ and D0OS XL wersion 2.x2 is in the structure of the

files it creates. Atari DOS 2 files are classified as "linked
sequential" types. That means, each sector in the file points tao
{links to) then next sector.

Sequential files have a few advantages: (1> File managers which

handle <csequential <files are generally simpler and smaller than thoze

tor other file types. (2) If a disk is partially "clobbered," »ou ca

T T Am
cften still recover much of its data when linked sequential filez are
used. This is true even if the disk’s directory is damagsd. =
generally fatal condition in other file systems. (3> File manacer

disk space ocwverhead is reasonably lTow.

Unfortunately, there are also several major disadvantages: el T
erase a linked sequential file, the file manager must read through
each sector of the file, a very time—-consuming procecs. @As disy =-d
file sizes get larger, this become a major factor in disk 10 tims.
(2) To locate a particular record in a linked sequential file, .=
generally have no choice but to start at the beginning of the i} E
read until you come to it. (3> Similarly, to append to a linked
sequential file, vou mar have to read the entire file.

Now, truthfully, file manager types don’t matter if you are uzing
DOS to do nothing but save programs, letters, and other things wher
¥ou always load all the information into memory before working on it
You’re actually using the disk as a slightly smart tape drive in theze
circumstances. Where file structure becomes important is when wou
need to randomly wuse bits and pieces of a hunk of data (a file? taoa
big to fit in memory.

The best of all worlds would be a DOS smart enough that you could

scmething like this: “"Give me the address of John Doe." Gensrall.,
the computer world considers convenience like this bteyond the scope of
DOS, relegating it to the world of Data Base Managers and their R
BXL TocolKit Fage =1

The next <step down is usually being able to zay, "Give me the
record in that file." With most file organization schemes, thi

— I
m Ly
L
-
CL

i

trivial taszk i€ the records are all the same length {and about as hard
as the first request if they are not).

How to Use NOTE and POINT to Advantaqe

But what about those 1inked sequential files we are stuck with? T
get to the 433rd record, we have to read through the first 432! #ird
we would be stuck here were it not for the fact that Aatari DOS
does provide one added feature: it allows you to Ffind out just

where on the disk wou are as you read or write & file. The magic
ztatement is NOTE. #&s wou max» remember from wour BASIC XL referesnce
manual, its format is

NOTE # filenumber, avaril, avar2
where the +first avar gets the sector number of the current positicon
within the file and the second avar gets the byte number within that
sector.

Then, if vou once read a file and find out ‘via NOTE) where itz 4ZZrd
record begins, you can later ask DOS to change ite +ile positicon
marker to that same location fwvia POINT, which has the same faormat as
NOTE>. \Vaila, you are then able to read or re-write the record.

How, you may wonder, is thies different from those DOS systems which
allow you direct access toa any brte (and thus record) in a file?®
Don‘t they allow rvou tao POINT to any disk location, alse? Not reallw.
Aatari DOS allows aonly what we call Absolute access. That means that
the numberz you use with POINT describe a physical location an the
diskette., Other [0S types allow you to POINT to a location which =
relative to the beginning of the file. (Example: To point to the
22nd record when each record has 20 hbytes, you would simply POINT to
relative byte number 448, if records are numbered starting at zerc.:

With Atari D05, knowing that record number 22 starts at sector =81,
byte 115, doesn"t tell you anything about where record number Z2ZZ
starts <{(unlesz record 22 ie shorter than 18 bytes), becauce sectocr =
are not alwars allocated to a file in order. (Instead, as a +ile S
built it is alwayzs given the next unused sector.> To make matters
worse, when a file is appended to, sectors with fewer than 25 betss

{252 bytes in double density) may be left in it.

The only real solution, then, ics to build a table of pointers, one Ce-
record. This technique has been described often before (among cther
places, in Atari“s DOS 2.8s Reference Manuald. In most Ty h
discussions, what is built is a numeric array (or arraxs) of pointersz
to records by number. A segment of a typical program is cshown:

?5@8 NOTE #2, Sector, Byrte

9?48 Sectaor(Recordnumber) = Sector

278 Brte(Recordnumber) = Byte
This is a lot of cverhead: 12 brtes per record.

Let us sidetrack for a moment. Consider this: when you use NOTE, ~cu
are given a sector number and a byte number. But the maximum sectaor
number is 728 and the maximum byte number is 253 {(double density:, =
we can store the sector number in as little as two bytes (remember,
double byte lacation can hold values from 8 to &5535) and the bt
number in a single byte. Total: three byrtes. Again, a program
fragment to implement this =cheme is shown here:

[O]

Page 22 B¥L Toolkit

NOTE #2, Sector, Byte

Temp=Recardnumber*3+1

Shi=Int(Sector/25&) : Slow=Sector&25s

Fointer®#(Temp ,Temp+2)=Chr$(Slow’ ,Chr${ShiJ,ChriByvte>

0 4y N0
S| I R Y
00 oo

cook at the savings when compared to the numeric arrars' But an
additional advantage of using a string to hold ocur pointers is that it
~an hold any other string as well., Why not a record’'s "name"?

If rou are using 1068 b»te records, a fiie with S88 recourde nesde aonlw
1588 bytes waorth of pointers, which can easily be held in memaory.
Even if vou add "rezord names" <(as PHONE.BXL does), *he memorw
requirement +for a set of pointers is quite small compared to the
amount of dicsk =z=pace we can access with them.

And, while you could re-build the pointers each time wou RUN &z

proqram, isn’t it just as easv to Keep them ir another file on the
disk? Yese! And all cof this is made so much easier thankz tao =ome
statements in BASIC XL, There is, however, a necessary Cxusz®:
Fecall that the sector and byte numbers given you by NOTE sare
absolute. If vou copy the data file to another disk, your =et of

pointers is no longer valid. You thus have two choices: rebuild the
painters after «copring the data +File or duplicate the entire dizk
instead (which preserves everything on the disk).

The Concept Behind PHONE.BXL, alias BlackBook

It’s Kind of funny that, because other DO0OS systems support random
access files implicitly, you <celdom <see programs such as ‘th:
published for them. And what’s so special about this program? In
we give you a complete set of routines for performing what is kncwn
an "Indexed" or "Keyed Sequential Access Method". Remember hci: .
said it would be neat to be able to access John Deoe‘s accoun
information using just his name? Remember how we said this was in -~
domain of Data Eace systems? Guess what. PHONE.BXL {cor, =:
prefer, "BlackBook") is actually a mini-Data Base. All in all
have turned a DOS limitation intc a helpful situation.

w

Pl YIS ST

e}

)

[}

{Sidelight: Actually, there is no reason you couldn‘t use 211 --=
techniques of this program under any D0S. In fact, most random =: =
LOS systems would make some of the <steps in our process--sucrn =

"prebuilding” all data files——unnecessary.)

BlackBook always works with its files in pairs: a data file arz -
index file. The cstructures of the files are cshown below:

BlackBook Data Files
Each record consists of three fields. Each field is a string of ut
24 characters which is written to the file via BASIC
RPUT statement. Since RPUT uses five bytes of overhead per strin:
a safety measure—-—-see your reference manual), the total number
brtec per record is 87 (2443 is 29; 3 times 29 is 87). I¥ you were
ook at a record byrte by byte, it would look like this:

AR}

Crohone a0

N

BXL ToolKit F

ow

L
1ad
[M]

Record

Structure in BlackBook Data File

Record:
Field 11
Exte | String Field indicator
Bytes Z2-2 Dimension of String Field
Bvtes 4-5 Length of String Field
Evtee &-29 Fieid data, as a string
Field 2:
Bwte 38 String Field indicataor
Evtee 31-22 Dimension of String Field
Bvtees 23-24 Length of String Field
Bvtez 25-52 Field data, as a string
Field 3:
Bxyte 959 String Field indicator
Bvtes &08-&41 Dimension of String Field
Bvtes 42-&2 Length of String Field
Bvtes &4-57 Field data, as a string
BlackBook Index Files
feide from the zactual Key {index) entries, there are two pieces of
irformation nesded when maintaining a Keyed file as BlackBook does:

¢1) We must Know how many records the +file is capable of holding.
This number—--called MAXREC--is established when the emptyr file =
pre-built. (2> Out of those MAXREC records, how many are currently in
uze? NUMREC tellsz us.

In BlackBook, MAXREC and NUMREC are placed first in the index file via
RPUT. They are directly followed by all the bytes of the inde:x
string. Since MAXREC describes the size of this string, we chozs %o
writesread it with BPUT. <(There is another advantage to wusing EF.UT
here, as we zhall see later.) The byte~-by-brte form of an index +ii=z

is thus as faollows:

Brte 1 Mumeric field indicator
Bytes 2-7 "e<REC, a number
Brte & Mumeric field indicator
Bytes ¥-1< HMUMREC, a number
Bvtes 15-7 The index =tring

Sidelight: the reasons we set up the files for MAXREC records, inzt=
of just adding space to the file as we need it, are twofold =

related: 1) You can only usze POINT on a file which has been OPENMN-:.
in update mode. {2) You can‘t append to a file when you are in updzate
mode .

The Index String)
The proper structure to the index string is the secret to not onl» the
success but alsa the speed of this proagram. Rather than tryving ¢

explain it as we describe the workings of the program, we will present
it in some detail here.

The <string actually consists of MAXREC "elements", just as if it were
an array. In BlackBook, we have chosen to wuse the first +four
characters of each person‘s last name as our Key value. Thiz 1=
arbitrary and could, without a 1ot of trouble, be changed. CInm Fact
itz zize is dependent on the value of the Indexsize variable.’

Fage 34 BXL Toolkit

In addition to the 4 character Key, there are 4 brtes cf cuverhead.
Three of them we Know about: two byxtes for the sector number, one bwte
for the brte number. The last byte is used as a Key cseparator and
alwaye has a value of 235 ($FF>. At this point, »ou may be wondering
why we went te the trouble of wusing a long string <with i ts
complicated subfield addressing) in favor of a string array fwhere we
could get the entire Key pertinent to a record with a simple record
rnumber?’. One main reason: BASIC XL’s FIND(. function works conls on a
zingle string (not an array?, and we wanted to use it for speed.

But wusing FIND()> has its own problem. Suppose that, just bt
coincidence, the sector and byte number characters (which iz what thew
hawve become, once they are in the string) happen to have values which

make them lcok like characters in a Key name we are searching far with
FIND()>, causing the function to return a false match. We avoid the
prablem through the mechanism of the $FF byte field separators: Uhen

we search for a Key name with FIND()>, the search string is preceded b»
a brte of $FF. A match is thus guaranteea tc start on a Key separatar
boundary. (e go further for safety: we separate the sector rnumber
into high and low bytes by dividing by 128, instead of the mare
conventional 236. This means that the sector number and byte number
characters can never have a value of 255 either. OQuerkill? FPerhaps,
but why not when it costs us nothing.?

Got all that? 1If not, don’t worry about it. If the description of
the program =still doesn’t make it clear, it doesn’t matter. I+ wou
follow cur lead, the scheme will always work.

Program Description: PHONE.BXL, BlackBook

I¥f vou list this program to a printer (and we sincerely hope »ou do
before trying to follow this description), you will find that it wil}
take over 8 pages of paper. OQObviously, there is no way we can give

vyou a ltine-by-line description of such a program. Instead, wes can
only point out the functione of various subroutines, etc. o+
necessity, some of the detail about program function, etc., given '~
other descriptions will be missing here. We hope and expect that »our
programming skills will have béen sharpened enocugh by now ta allow oy

to work through the details.

As with some of cur other programs, we will describe this program from
the "top down". That is, we will present it in roughly exscution
order rather than listing order.

1808-1338 The usual constants, both strings and numbers. Note how we
have given "names" to commonly used small numbers such as zero znd
one. This saves memory space, not time.

1348-14306 If you adapt BlackBook to your own purposes, you can. add
data fields here and/or change the sizes of the ones given. I+
you do so, be sure to adjust Recsize, the number of bytes in each
record. If you choose to change the length of the portion of
field used as the Key, change Indexsize at your own rizk. I
theory, everything in the program Keys off this variable, but e
have never tested the theory.

Y

1548-1558 One advantage of using BGET with the index string iz thzt
we do not need to make the DIMensin of Index$® match the <size in
the file, as we would if we used RGET. This makes building 2 file

somewhat easier also, as we shall see.

BXL ToolKit P

P
[Tu]
m
(XAl
N

15786-1718 We hawve given all major subroutines names in this program.
This makes rernumbering and reorganizing a bit more difficult, but
parys off in much more readable code.

1726-1956 Did we mention that BlackBeook will even dial rour phone for

you? Here, we're just setting up an arrar of values for later use
with SOUND.

m

2008-2276 Thie monstrous program is all driven from these few lines.
A1l we do iz present a menu and accept only one of five choices.
If wyou are using BlackBook, you have to Create a file before wou
can do anything else, =0 we will now track what happens when wou
ask for that main menu option.

1]
m o

'

158088-1528806 Thiz major routine figures out how big a file wou can
have, allows »ou to specify any size up to that maximum, makez wouy
choocse a2 name for the file, and creates an empty data file an:
corresponding index. Such a lot of work for so little code! It
done with mirrcors, otherwise called subroutines.

u

46908-7840 The Calcsize routine., It figures out how big a data file
is possible using a trick or two we hadn’t seen before. First, it
creates a trash file containing 28@ bytes. It does this =o that
it can read the szector count for this file in the directory: 2Zaa

brtes is guaranteed to require one sector in double dencity, twc
sectors in single density. Then, when it finds out how many frees
cectore there are, it Knows how many free bytes there are aon the
disk. From this count of free bytes it estimates the maximum

number of records by dividing by the number of bytes used by each
record, which is in turn the sum of the record size and the index
size. Finally, we never allow ourselves more records than we have
room to point to in the index string.

5680-5248 0Our Getline routine is used to avoid the INPUT =statement,
We avoid INPUT because we don’t want the user moving the cur=czr
a1l cver the zcreen, erasing the screen, etc. Either the ESCarne
key or the RETURN Key terminate a line here (mainly becau

R

have the same walue if ryou ignore the upper bit). The oriw
editing key we allow is Back Space, and then only to the beginn ng
of the field. We even provide for the use of a flag which change=
lower case into wupper case, used by the Getfilenames routins ta
avoid lower case in file names. Finally, we will only get az man»
characters as the caller asks for <{the contents of Maxline on
entry).

54808-54886 Getfilenames is only a little bit smart. The user shou'd
not type the file name extension, and typing the drive specif)
is optional (D1: is provided automatically if the specifier |
omi tted). Two names are returned, alike except for th
extensions, DBF and DBX (Data Base File and indeX).

L

hd
w7}

D

7088-74688 Most of the work in Create is done by this routine

Makeindex. Since this s & wvery important routine, we FERE
examine it in some detail., Exception:. As this routine waorks, 't
keeps the uszer informed of where it is. The code for thiz 1=

fairly obvious and will not be discussed.

Page 3& ' BXL Taoolkit

We first set wup the data fields with some filler byvtes CEFF, ip
fact)., After performing a NOTE (line 7537@) to find ocut where the
beginning of the current record is, we write the filler data to
the data +tile (line 7&16). As we did that, we built x kKeyw string.
Note its structure (line 7398): first byte is alwave $FF {2550,
followed by four bytes which match the first four chzaracterzs in
the last name of the person being indexed, followed by the NOTEd
information. We lengthen the index =tring (line 788> by simply
tacking the key we built onto the end of it.

We perform a1l those steps for each record in the File <(the
FOR loocp». When all data records have been written cut, we write
out the new index file (lines 7648-74408). Note the presence of
the check in line 7436: if the length of the index ztring doesn’t
correspond to the number of blank records which were set up,
something went disastrously wrong. When writing »our own code,
checks 1likKe this are a good idea (but see out final comment=s
alsod.

After creating a blank BlackBook file, you would presumably want tao
put some data in it. In this program, one main routine is uszed for
all operations on the data in the file: the Edit operations start =zt
line i1eada@a.

18608-18310 Once again, a major routine devolves to a small lacop with
many subroutine calls. And once again its primary purpoze iz to
present you with & menu of selections and make you choose cne. In
the case of Edit, it first asks vou a question and does a 1little

set up.

7288-7328 Evern though BlackBook files on only the first drive =ars
listed for wou, the Showfiles routine will accept a choice of =
pair of files from any on-line drive.

7488-7468 Getindexinfo is a simple routine: it opens the index fi!=2
reads the count of available and in-use records, and gets=
index string in place.

S5788-5858 By never using zero as a real record number, we mat=z
Showrec‘s job easy: If it sees us trying to display record number
zero, it displaye blanks instead. HNote that the record rnumbsz-
referred to is actually an 8 byte Key entry in the index =strircz.
which may bear no relaticonship to the record’s position within th=
data file. If »ou modifiy BlackBook to add fields, this routine
must change to fit; but the POSITION and FRINT statements are szz.-
to modify. To get the data to be displayed, this routine in ‘turrn
calls...

4380-6348 Ge tbykey simply gets the varicus fields of the datas record
after requesting a POINT to the right spot in the file. Again
you could add data fields in each record quite easily in thiz

routine, simply by extending the RGET statement.

6088-6878 Even deeper in the GOSUB queue, PointbyKey extracts thé
information abcut sector and byte from KEY$ and POINTs to :he
proper spot in the data file.

BXL ToolKit F s I

a
¢

18246-18298 Finallwv, back in the Edit menu, we demonztrate a neat war

1111

7808

&340

Back
to

of making menu choices using the FIND() function. The nice npart
about it iz that an invalid choice provides an Option value of
zerco. WYalid choices are vectored to the appropriate routine. For
the sub-commands of Edit, we chose to use line numbers, primarily
so we could renumber this section of the program more =asily.
Let’s 1ook at sume of those choices in a logical order.

8-11298 Again, on the assumption that we are =zetting up

3 new
BlackBocok file, we start by adding recorucs, Since the
Edi tmenu routine at lines &880 through 4778 simpiy sets up a =zet
cf blank Ffields to be Filled in, we wvion’t dgdescribe it further
here. The Getline routine does yeoman duty again, enzurirng that
we get nice neat data, confined to the proper areas of the =creen.

Before bumping the count of records (as well as the current record

number?>, we call two routines which do the bulk of cur waork,
Opserve how, in line 11258, we built up KEY$. By now, rou koow
that an index setring entry consists of a separator bwte, four
bvtes of the record’s name, and three bytes of NOTE .info. Eut

ty
&

1
!

rr
g

look where that NOTE info comes from here: from the last pocs=i
index entry in the index string! fAs you follow the n
subroutine, »ou will see why.

A

il

-7938 This ic potentially the slowest part of BlackBook when wou
are adding to a large file. Using a FOR loop, we search thraough

the index string looking for a record whose name is equal to or
greater than the one in KEY$. Because we never try to insert o
a full index, we are guaranteed to find one such name: bk!znk

records were given a name of all $FF characters!

When we find the proper position to insert our new entry, we ~.
make room. We leave it to you to work out how beautitull. -
MOVE of line 7980 works (though we will remind »ou that a negz’
length forces an incertion-twvpe move). The special case chowr
only used if we are putting the last possible name in arcz
happens to fall at the end of the list.

T

NN

SO

Do you see what we have done? If this was the first real e
being inserted intoc all the dummy names in the index string =
bytes find their way to the beginning of the string. But -
what data record we will use: the last possible oane. Zo e T
That’s why we are using an indexed file, right?

-448660 Speaking of which, we now need to PutbyKey to get the =:=-
record on the disk. As with Ge tbykey, we let --
Pointbykey routine =set wup the POINT for us and then we =.mz°.
RPUT the data fields to the disk. It would be easy to add m:-=
data fields here, to correspond to GetbyKey.

W

in the Edit menu: Once you have added some records, you max i.z-*%
go forward or backward in the file loocking at what you have do-e.

Or maybe you want to find a particular name.

Page 38 | | BXL Tao - *

18338-168458 ~= long as we're =till within the bounds of wvalid data,
e et the wser go to the Next or Last <(previcuz) name
‘Alph«b~+1r111y) in the file. Simple, isn’t it? Tharks to the
fact that the index string is already sorted in alphabetical
order. (Well, that's really ATASCII order, but for nrnamez the
difference ie moot, unless some use upper case and some use | ower

case.? Notice that these routines do not need to dizplavr anw
data, since the main Edit menu loop does tha*t for them,

18478-108599 Thi is why we went to all the trocuble to set up that

monstrous index string! See how we build our search name in line
184238, with 2 leading $FF byte. Then all the work is daore for u=
in line 16338: we =simply FIND the first match' Very faszt, T
efficient, Fgain, by calculating REC as a function o+ the

position we found the name in the index string, we can 12t ths
cdit menu loop display the data for us.

w

And the only other things thice program allows you to do with ~our dat
iz dial a phone number or erase a name from the list,.

186686-16958 This only works on touch-tone phone systems, but it doce:z
work. If vou hold your phone’s microphone up to your computer’ sz
speaker it is actually possible tc let the computer dial €ar wou
Some cther things to note: @A 7P’ in a phone number indicates
short pause ‘some long distance companies need such pauses during
dialing?. You may easily adjust the duration of the pause b+
changing line 187820, A "W’ causes the dialer to wait until «=ou
give it the go-zhead. Once again, our friend the FIND() Furction
passes through only those values we actually want to handle.

YU

The tone generator uses the special 14-bit resolution mode of tr
Atari sound generators to produce frequencies which arse me r
accurate in pitch than those available with the SOUND statemsr

The subject iz tcoco complex for further explanation here. Mar e
araphic and sound books for the Atari explore this fairly full..

=
=

189460-116%90 In mocst wars, the Erase a Record rcoutine is simpl+ :*=
reverse of the ADD routine. We first remove the record pointz-
from the index string by simply squeezing up the string ¢1ine:
118280 and 112285, But, because we don‘t want to losze +n=
NOTE information in that pointer, we fill it in with the ztzarnczrd
dummy name <all $FF characters) and tack it onto the end of tn

WD

index string {line 1185@8>. UWe mark the record as deleted in t-
data file by zapping just the laszt character of its PHONE$ =ztr in
(11048 and 11878), Naturally, the number of records is riow
less than it was before.

i

T

0d

Azide from the various edit cptions, the Edit menu provides an =it
chaice and a hidden «choice <(note the presence of the under]
character in line 18248). '

h

)]

11300~-11378 To exit from the Edit menu, we simply close the data i)
and write out a new version of the index file. The next time
get to the Edit menu, reading the index file will put us right
back where we left off.

T

D

?980-9948 In the process of developing this program, we had zewverz)
occasions to doubt our sanity. Loops would straighten out. GOTZ:z
wouldn“t, Data would be lost. And the index string would z=t

BxXL ToclKit Fage 2%

mangled unmercifully. To help view what was going on, we would
aoften write small routines to display certain pieces of data. For
gxample, we built in this debug routine, which simply displars the
current contentes of the index string in a reasonably readable
MAanner . It then waits for a Keypress before going back to the
Edit menu.
Now, truthfully, there is no need for this routine in the final
version of the program. The indexing bugs seem toc be gone, cata
moves s=moothly, and loops Keep on looping. But we thought it
might be educational for you to see how we approach the debug
praocess: carefully and with & lot of extra displays.

blell, after we’'ve created a BlackBook file and added several records,

we mxy notice that the file is getting tull. Time to expand the +File
and make room for more phone numbers, right? Right.

280608-28270 Actually, this Increase file <size routine is almost
identical with the Create a BlackBook file routine. The maliar
difference is that we use the information about file space left on
the disk {and the user‘s response to our query) to append a chunk
of file to our existing. The Makeindex routine, discussed abcove,
does all the work. MNow you may notice why Startrec and Maxrec zand
Rec were all set up before the call to Makeindex in ADD. E» doing
soc, we need only use other appropriate values to properly call the
same routine here in lIncrease.

The only other possibility provided for here is the casze of the
clobbered index file. There are four ways the index file could become
invalid: (1) Power to the computer goes off before the file is Closed
or the disk is comehow damaged. (2) The program crashes with an
error., (3> You erase some records you didn’t mean to. (4} You
COPY the data file to ancther disk so that the NOTE pointers are na
longer valid.

No matter what the cause, the Fix/Recreate Index rcoutine will cure |
il1ls, In the <case of deleted records, it gives »ou a chance ¢

recover them (so long as you didn’t ADD a name after doing th
accidental ERASE).

Y
[

1]

258088-25118@ Again, we show the user what BlackBook files are an *=
disk and allow him/her to chcose one. We prepare the screen For
some messages and fill the index string with #FF characters.

e

25138, 25548 Don“t you wish BASIC XL had a function which wouid
detect the end of a file? Well, it doesn’t, but the PEEK() which
controls this loop functions as one just fine.

25148-25188 We simply figure out where we are at in the data ba

file, get the record from disk (line 2514@ would have to change 1¥
you add more fields to each record), and create a wvalid ke,
consisting of the separator byte, the record name, and the
NOTE info.

25190-25318 Remember how we zapped the last byte of the PHONE$ stri~g
when we erased a record? Here’s where that pars off. I+ =zuch =
record is detected, FIX gives you a chance toc "un—-delete" it.

Page 4@ ' : BXL Toolkit

25328-25418 [f the user wants to un-delete the record, we change tna+

=

magic character in PHONE$ to a space. If not, we change all the
tields 7Tard the record’s name in the index =tring’ to Filler
brtes. In any case, we write out the modified record. Lines

25298 and 25408 are necessary to avoid a false end-cf-+file
indicator (produced because of a bug in DOS) when writing the lact
record.

25438-2551080 Thiz part‘s almost easy: If the record found iz 2 filler
(blank? record, we simply add its pointer irfo to the end of the
index string. If the found record is a real one, we have to put
its name in the proper place in the index string. Loaok at that!
A call to our old friend, InsertkKey, Jjust exactly as if we twere
adding a new record.

25528-25538 Since we have to count the number of records in the file
anyway, why not give the user something to watch as we work.

25556-256808 Furny how thiz code resembles that at the end aof the Edit
Menu exit and the end of the Makeindex routine. Maybe we need
ancather subroutine just to write out the completed index file,

There will be & quiz tomorrow.

Whew! Did »ou get through all that? 1If so, then you are readr to
convert BlackBook to rour own needs.

Several fairly simple improvements would increase the wusability ang
safetry of the program dramatically. We leave them as exercisez +aor
»Oou ?

1. There’s not a zingle TRAP in this entire hodgepodge. Mace
suggest TRAPping at least the more dangerous sections, =such =
where we create file, etc.

g

1§

2. The Edit Menu is missing one obvious and important choice: (har
(edit) an exiz=ting record. No good reason for the omission =«
than the fact that it seemed unnecessary in a demo program.

BTREIN]
T

ot

1
(]

. Cut the program up into pieces, chaining between them via RUN,
that the index string can be bigger. ‘

4. Use a larger Ker. Change the file to a mailing list <file =z24d
field info in all the places we noted) and use the zip code plus
first two letters of last name as the record name for the inde
string.

2. Use this basic program for something we didn’t think of. Tell us
about your efforts,.

BXL ToolKit ' Fage 31

2.18 MAKEAUTO

ke have received many requeste for this program. Its purpose | quite
simple: it creates an AUTORUN.SYS file for use with BASIC xL. Mar e
importantly, it allows you to cpecify one or more commands or
ztatements which BASIC XL will execute on power-up.

We will not explain this program on & line-by~line basis, because the
bulk of the program is so simple. It simply allows vou to type in ane
line after another until you either enter & bBlank line {RETURN cnlw:
or you run ocut of rcom <(you are allowed up to 1592 characters,
including RETURNz), It then writes ocut a new AUTORUN.SYS file by (13
reading the machine language proagram, including the run addresz, fraom
some hex data =tatements and then (2) writing cut »our commandse in =
format acceptable to DOS’s binary file locader.

Perhaps the only other thing worth menticoning 1= the fact that wour
commands are written out backwards (the FOR loop of lines 778 to 7Foa:
tc make the job of the machine language program easier, Ubihen

AUTORUN.SYS is loaded by DOS, your backward commands will start af
location $8481, preceded by a byte containing their total length lez=z
cne (line 75@8). Again, this is all to make the machine language
program smaller and simpler.

Nermally, we use AUTORUN.SYS to just cause BASIC XL to RUMN cur mernu
proagram. In other words, we recspond to this program’s prompt with

RUN "D:MENU.BXL"

However, »ou may choose any commandes »ou wigh. For example, suppose
you had a wery large program you wished to run on power up, but rou
want the user to kKnow that the loading delay was normal. There zrs
two sclutions to that: (1) Have AUTORUN.SYS run a small program which
simply printe a "pleace wait" message and then chains to the largsr
program. (2) Let AUTORUN.SYS do all the work, by answering %=z
prompts 1ike this: .

GRAPHICS 18:POSITION 4,11
PRINT#6;"please wait"
RUN *"D:MYPROG.BXL"

Why not? About the only statements »you can‘t use via AUTORUN.SYS zr=
those which might affect page six (e.g., POKEs)> or the device handizr
table (at $831QA). Try it out yoursel+¥.

M
g.l
[a]
1]
F)
P

BxL Toolr &

CHeEePTER 2

EsaTIcC =L Extended Statemarn =
3.1_ How to Install the Extended Statemente
Because PBPASIC iz wusually an interpreted languace, it iz ono more
tlexible than the kevwords with which it is endowed. Ullhen we at 0S5

designed BASIC XL, we wanted a true interpretive BASIC with & reasan-
able amount of power and speed. However, we alsc wanted a degree of
flexibility oanmatched in most wversions of the language. Hernce the
ability to add statements to the language was included, even though no
such "extended" =z=tatements existed. Until now!

This release of The BASIC XL ToolKit includes six new exfterded
statements for wvou to use in your own programs. The statement:z added

tall into two groups: t1> procedure calls and (2% string arraw
sorting. Before describing the new statements (in sections 2.3 and
3.4, respectivel»), we need to discuss how these extended =statemerts

are added to BASIC XL.

I¥f you request a directory of the reverse ("flip") side of your EBaSIC

XL ToolKit disk ‘wia BASIC XL’s DIR command), you will find the +ils
EXTEND.COM

and it is this file which contains the code which implements +tre

extended statements,.

There are ceveral ways to begin using the extended statement=. 7=
easiest way is to simply duplicate that flip side of your ToolKit = :
and boot the resultant copy. <(Again, please don’t use your ariz =
disk for anything cother than making duplicates. Thank you.?

The reascon booting that flip side works is that, in addit.-- -
EXTEND.COM, we have provided you with an AUTORUN.SYS program - -~

incorporates both the extensions (identical code to ‘th=z: -
EXTEND.COM) and a BASIC XL command invoker identical to that pro. --d
by MAKEAUTO.BXL <(=zee section 2.18>. 1In the version on vour 4di:=- S

have given thiz MAKEAUTO equivalent only one command:
RUN "D:EXTEND.BXE"

In turn, EXTEND.BXE is a very, very short program. We list it her- -
its entirety:

18 Graphics 18 : Position 2,12

280 Print #4; "...please wait..."

30 Move %TS4A,%C4a,49

40 Run "D:MENU.BXL"

The only important line here is line 38, the MOVE statement. NOTE
CAREFULLY: even after the extended statements have been loaded i--=
memory, they must be made available to BASIC XL. This is accompl . z-=2
by placing pointers tc their execution and syntax tables in #Cd9-:.%
and $C&-%$C7. This has to be done after BASIC XL isszues -
Ready prompt, because BASIC XL always clears these locations to =.-
upon a coldstart (e.g., at power-on). Note the other implicatiar =
this: if, later, wvou convince BASIC XL to undergo a coldstart iesi- =
by exiting to DOS and performing a LOAD of some Kind or, az :z-m

programs do, by POKEing the warmstart flag off), you must once =z-:=:r

BXL ToolKit Faoe 32

perform thizs MOVE or the extended statements will nat be auailable
Rgwil tBctually, if wou exit to DOS and LOAD or run some program, th
chances are good that »ou should then LOAD EXTEND.COM agai;, sinc
moszt di

i

) (I (]

sk -based orcgrams will owverwrite the memory uszed by the

Anather way to implement the exlensione was just hinted at: »ou mar,
from virtually ary DUO3, simply LOAD EXTEND.COM and then enter the
EBASIC KL cartridge. I+ »ou are using & menu-driven DOS, chooze the
zppropriate menu options to do the LOAD and enter the cartridge. If
vou are waorking with 2874+ or DOS XL, you may simply type

EXTEND

CARTRIDGE
in respanse to the D1: prompts Tand, in turn, these commands cou'd he
part of a STARTUP.EXC file--see »your DOS XL manual). If w»ou enter
BASIC XL in either of these ways, you will be presented with +
Ready promgt. In order to use the extended statements, »ou will have
to use a MOIVE $58A,%C4,4 commnand as was given above.

The final war to implement the extensions which we will explaore fherse
ie =& wariation on the first one. Simply replace the gorogram
EXTEND.BXE with rour own program of the same name. I+ you keep the
MOVE =st=z=tement in wour program, and if it is executed before rou
any extended statements, this will work Jjust great. Probabl» th
acsiest way to cuztomize EXTEND.BXE to your own purposes would be !
.impl¥ change the name of the program to RUN in line 46.

T o
LI ORI

m
e o
[

Remember : the DOS given wou on this disk has neither menu nor commsand
processor. It i= only capable o©of booting a disk Wi th g
AUTORUN.SYS +file present. You may, however, copy all or scocme of ¢

oo
1

files on this disk to another one which has wour preferred versicrn of
DOS already on it.
Without further ado, then, let us proceed toward the descripticnsz o+

the extended =tatements.

FPage 44 BXL Toolkit

3.2 Abbreviations Used in Formal Statement Definitions

The following are the abbreviatione used in the formal format
definitions of the following sections <“an abbreviation marked with an
asterisk s new; others are consistent with the BASIC XL Reference
Manuald:

avar -- arithmetic variable, neither a string nor an arrayr.
Examples: TOTAL I J Xa

svar -- string variable, either a string array or szimple string,
distinguished from an avar by a trailing deollar sign.

Examples: MAMES$S SA%
Mote that one, two, or three subscripts are often u=zed
between the parentheses following an svar. For the
special case of an svar used to satisfy the requirement
for & pvar or cvar (see below), no parentheses mav hbe
used.

savar —-- ztring array variable, =same format, etc., as svar but muszt
be & properly dimensioned array.

mvar -- matrix wvariable, numeric array, distinguished +from an
avar by a trailing left parenthesis.

Examples: VALUES{)> SCORES()
Note that one or two subscripts normally appear between
the parentheses following an mvar. For the special cxas
cf an mvar used to satisfy the requirement for a pvar cr
cvar <{(see below), nothing may appear between the paren-
thesesz.

n
()

(]

aexp —— arithmetic expression, any wvalid combination of rumeric
values, ocperators, etc.
Examples: 33 P7+VALUE SCORE(3*J)

*¥ rparm —-—- receiving parameter, either an avar or an exclamation point
tfollowed by an svar or mvar.
Examples: TOQTAL ‘MNAMESE TWALUESO)
* cparm ——- calling parameter, either an aexp or an exclamation point

followed by an svar or mvar.
Examples: 29%SIN(38)> 'TEMP$ 'AMAX ()

slit —— string literal, a string of characters enclosed in quotaticon
marks.
Examples: "TOTALIZE" "Tegst——>3>"
* pname —- procedure name, used to identify a procedure, alwars

consists of only an slit.

* cname -- calling name, used to name a procedure to be CaAllLed, mav he
either an slit or svar. If an svar is used, it may not hbe =
string array and may not use any subscripts. ‘

Remember: words in a format definition which are given in all capital
letters <(e.g., USING) must be entered exactly as shown. Itemsz in
square brackets are optional. Items with ellipses following mar be
repeated as desired example: rparm [,rparm, ...] implies that you mzy»
uce one or more receiving parameters).

BXL ToolKit Pa

o

n
)

o

L

3.3 Procedure Blocks and Related Statements

Before describing the individual statements, we present an cverview of
PROCEDUREs in BARSIC XL.

I+ you have praogrammed at all in any dialect of 2ASIC, you liave uUszed
the GOSUB statement and its companion, RETURN. For example, »ou might
cee a program which looks something like that which faollows, CThis
program is for demcnstration purposes only, but it is a fairly amuszing
lTittle thing to gpring on an unsuspecting friend.?

286 Yalue=1680

20 Min=18 : Max=90 : Gosub 1480

48 Resul t1=Num

38 Min=l@g*/alue : Max=98xUalue : Gosub 186

£8 Resul tZ=MNum

78 I+ Fesult2 > Value¥Resultl Then 9@

88 Print "You appear to be conservative in nature." : End
?8 Print "You seem ready to take risks." : End

188 Rem THE SUBROUTINE

118 Print ¢ Print "Please give me a number between "; Min
120 Print " and "j; Max 3

138 Input ", inclusive > " ,Num

148 I MNumi=Min And Num<{=Max Then Return

158 Print "Can’t you read? That number is"

148 Print " ocut of the range I gave you."

178 Goto 10@

And, in a small program like this one, that usage of GOSUB max be u=f
fine. #As programs get larger, though, lines such as GOSUB 325@ t=:ome
lesse and lecss meaningful. Atari BASIC (and thus BASIC XL> allows oy
to do something 1ike this:

186 Let Getinrange=1860
28 “Yalue=10@
28 Min=1@8 : Max=98 : Gosub Getinrange

(etc.)
Do vou see what we did? By giving a name to the subroutine, we -:zn
make our code more readable. A disadvantage to this method iz t-:z*®
BASIC XL (in common with Atari BASIC) allows only 128 unique wariztb'lsz
names. Using a variable like this to name a subroutine diminishes tre

peocol of available names. This, then, is the first advantage of ERZI!
XL’s new procedures: because we use a literal {(quoted) string to nzame
them, we need waste no variables! For example:

20 Temp=108@ :
238 Call "Get Im Range" Using 18,98 To Resultl
58 Call "Get In Range" Using 10%¥Temp, 78%Temp To Reszult:z

’a If Result2 { Temp®KResultl : Type$="conservative"
26 Elce : Type®="a risk taker"

20 Endi+ .

?S Print "You ceem to be "; Type$; " by nature.” : End

[Listing continues on next page]l

0
w

[Tu]

[

=S
(3

BXL Tooikif

199 Procedure "Get In Range" Using Min,Max
118 Local Temp : Temp=IlE%0O
128 While TempiMin Or Temp>Max

1z2a If Temp<>1E?@ : Print

14@ Print "Can”"t vou read? That number is"®

15a Print * aut of the range 1 gave »ou.,"

158 Endif

17a Print ¢+ Print "Please give me & number hetweenrn "3 Min
180 Print " and "j Max ;

178 Input ", inclusive > ", ,Temp

20a Endwhile
2i@ Exit Temp

Confused? Mot too surprising. Let s take a look at the rnew lirnez a
=tep at a time. First, in line 38, note the CALL to the
PROCEDURE rnamed "Get In Range" i‘which starts at line 186}, Mote how
clear that CALL is, =ince we can use any characters we like in the
string. That’'s pretty easy, right? :

But what =about that USING which appears in both the CALL

PROCEDURE =txtements? In line 28, we are "Using" values of 18 and =&,
But inm line 188, we are "Using" the variables Min and Max. Ien"t that
neat? We didn't have to do the assignmentse to the variables before we
called the =subroutine: CALL does the work for us! It automaticalis
moves the walues (168 and 98) into the corresponding variables ‘Min and
Max>. This is called "passing parameters” tc a PROCEDURE.

o)
1L

0o

[N

Pl

T

T

It gets better. NMNotice the EXIT statement of line 218, It =pecif:
a value {(the contentz of Temp?) which is to be placed into the wariab!
Resultl that follows the TO in the CALL statement. That’s reasonabi
right? If »ou can "pass" parameter values, »ou shcould be able t
"return" parameter wvalues.

iy

But doesn”t using the variable Temp in the procedure subroutine wrz=z
havoc aon its later use in the main program (e.g., in ltine &@>7% =h
but there‘s linme 118, with its deceptively simple-looking LOCAL =t
ment. Between the use of LOCAL Temp and the EXIT statement, the
value of Temp i= <=caved for »you. When EXIT is executed,
LOCAL variablez are automatically recstored to their previcus wal:
Wow! And Whew!

=
1 hd
'
4

u
ot
i

Jeoa

The example we dust worked through used all of the -z
PROCEDURE-oriented extended statements:

PROCEDURE

CALL

LOCAL

EXIT
By no means, though, did we use all of the capabilities of theszs
statements. In addition to the formal definitions which will +oliow,
we will present further examples both in the text anmd in programs on
the disk.

We have presented these statements befaore the formal definit
because they are all closely related, and we felt that having a =m
but effective demonstration of their wuse would make it easie
underztand the definitions.

(]
i
— it

P ot

Bt

oy

r

BXL TocolKit F

i
i
1 (]

b

J

3.3.1 PROCEDURE (PROC.,)

Format: PROCEDURE pname [USING rparm [,rparm...] 1

Examples:

1888 Procedure "Calculate Pay" Using Hours,Rale,'Tastablei:
387 Procedure "Frint Meg" Using !'Msg®

4848 Procedure "Quit"

The PROCEDURE <z=taztement iz the nucleuz around which the aAather
ztatements in itz group are built., It is used to define the beginning
of & subroutine which is intended to be executed via a CALL stzatement.

& PROCEDURE must be given a name, which may be any set of &TASCIT
characters enclcozed in quotation marks, the number of characters heinc
subject only to the limitation that the entire line must be of legs
tength. Note in the examples above how spaces have been uzed in tH
PROCEDURE names tc add clarity to the program. As a matter of goo
pragramming <twle, »you should make the names as self-explanator.
possible, shortening them only if you begin to run out of memory.

-1

T

i

e g

oo

When a CALL <statement iz executed, it places an entry on the Run-Time
Stack {(the same stack used by GOSUB, FOR, WHILE, and their partnersz:
This entry serves to identify the fact that a PROCEDURE statement tHx
been encountered, and its subroutine <(which we will here call tr
"procedure block") is now in control, When the PROCEDURE statemszr
itsels is executed, then, it ignores its own name and does noth r
further to the Run-Time Stack. Unless, that is, the wuszer *-:
speciftied that one or more parameters are being passed wiz *hz
USING Keyword.

T

vt

If USING is cocded, it must be followed by one or more variable nam. .
If the wvariable names refer to string variables, string arra.:z. -
numeric arrars, the name must be preceded by an exclamation point '
No matter which Kindi(s)» of variablels) is/are used, when PROCEDURE
executed, their current "values" are pushed onto the Run-Time Z%+: - .
Then, after the walues have been pushed, the new values as spsc.-~ - -
in the CALL which invoked this proacedure black, are copied into *-

same variables.

When working with simple numeric variables, this iz a +t&irly =tra
forward process.. Take the following set of statements as an exam

18 Junk=24

28 CALL "Test" USING 12%17

38 Print Junk

48 End

78 PROCEDURE "Test" Using Junk

80 Print Junk+Junk

?@ Exit
In this example, when the PROCEDURE named "Tect" at line 78 is inu:--
and the statement iz executed, the current wvalue of the wvariazz =
Junk (28, as ascigned in line 18> is pushed on the Run-Time Zt:z_- .
Then the value of the expression (12%17, or 204> is copied into Junk.
Any <ubsequent references to Junk will find that it contains thi=s -=.
value, For exampie, the Print of line 88 will display the walue 403,

—

Page 48 gxXL Too' - &

The effect of pushing the prior value of Junk is =simple: when the
EXIT =stzatement (line %8> iz executed, it will discover the walus thHat
was puzshed on the =tack and restore Junk to its pricr condition. Thus
the Print of line 28 will display the value 2Z8. <(The EXIT =ztatement
1= discussed in more detail in section P.3.>

The purpose of 211 thie puching may he less clear. First, bv
"reusing"” the varizble name Junk in our pracecure Block, we ar

conserving our precious names (remember, we are allowed cnly 12
different names in a program:. Since the value of the wvariable
restored on EXIT frcm the block, we need not worry abcut changing i
within the block. Second, and perhaps more difficult to ograsp +from

P T

this simplistic example, we are able to pass valuyez "into" the
procedure black without having to be aware of what namez are uszed
within it, The example which introduced this chapter chcows thi:z
tfeature to some advantage and alse serves to demonstrate how thae

resultant code can be both zmaller and more readable.

For strings and arrars used as PROCEDURE parameters, the methodologs
iz the zame, but the results are more complex. The difficulty lisz i
understanding Jjust what is the "walue" of a string or arrayr. Im Atard

EREIC and BASIC XL, the walue of any variable ie the content o+ itz
entr» irn the ‘ariable WYalue Table. This table recerves sight 33
bvtes per variable and consicsts of a flag byte, the variable’s number
(@ through 127), and six brtes of "information".

In the case of =imple numeric wvariables, the informaticn iz the

rnumeric walue of the variable, expressed in an internal floating poir*
faorm. {You mar consult the Atari Technical Manuals or COMPUTE!‘ =
Atari BASIC Source Book for much more detail on the structure of the:zz
and cother tablez.?

For string and array wvariables, the flag byte indicates that ‘+=

"information" describes the Jlocation and characteristics af -z
contents of the wariable. For example, a simple string variable rzz-:
information about its address <(within string/array space?, Pz
dimension, and itz current length. The string itself (the ‘“conten::
of the wvariable +rom an external point of view) is located at +re
given address. #@Arrave (both string and numeric) need an addrezz -4
15

two dimensicns instead; but, again, the actual "contents" are founpa = *
the given address. :

Thus, when we push the "wvalue" of a string or array variable on t-=
Run-Time Stack, we are pushing this infaormation about where +--
actual contents are Jlocated in memory. Similarly, when we cop. =
value passed by the CALL statement into one of these variables, we z-
not copring the actual string or array. Instead, we are copring &5
address, dimension, etc., as appropriate. Consider this sequence:

i

18 Fun$="Swimming is fun." : X% = "Right?"
28 CalL "What Fun" USING !Funs$

32 Print Fun$, X%

48 End

48 FROCEDURE "What Fun" USING 'X$

78 Print Fun®, X%

28 K$(1 ,Si="Laugh"

?8 EXIT '

Bl ToolKit F

ot

Jul

hd
ds
d4_)

Hopefullx, wou will actyally tr» thiz little program. If 20, wou wiil

find that linz 78 showsz that, as we have described above, the "uwalus"
of Fun® has been copied into X$. Line 78 will display:

Swimming s fun. Swimming is fun.
The real surprise comes when line 3@ is executed (following the
syccessful EXIT in line 28). The resultant display ic:

Laughing is fun. Right?
Do wou see whr? I¥f the wvalue of Fun$ is copied to X$, then the
addrezs of the contents of Fun$ is now in X$°s address entry with
itse walus irn the wvariable table. Thus, any change we make in trhe

ztring pointed to by X$ affects the memory at that address and thus
affects the contents of Fun$. Complicated, yes?

A similar action place takes place when a string array or numeric
array i< passed as & parameter: chhanges in the contentsz of the
PROCEDURE = parameter affect the contents of the CALLer’s parameter.

Technical Note: In computer lingo, simple numeric variabl
passed to a procedure block via a "call by wvalue". Array
ctring, on the other hand, are passed via a "call by reference
The exclamation point required by the syntax of the extended

()

it
o B
CL T

m
ot

[

statements can be wused as & reminder that these are call= tvw
reference, something not hitherto seen in BASICT XL, (Actual ly,
the exclamation point is necessary so that the expreszcion
evaluator can make the distinction between an expression——which

could, +for example, start with a string or array reference-—and
cne of these szpecial calls by reference.)

Secondary Considerxticns

(1% You may, if »ou wish, pases too many numeric parameters to =
PROCEDURE. BAZSIC XL makes no check for matching number of parametsr=z,
It does, howewer, insist on a type match. Thus this sequence w: !

cauze a "USING Type Mismatch" error:
4818 CALL "Gorp" USING 22

7288 PROCEDURE "Gorp" Using 'A$

If the CALL passes too many parameters, the excess are ignored. I+ ¢
passes too few, a numeric walue of zeroc (@.8) is assigned t !
remaining PROCEDURE parameters. This, in turn, can cause a %t.peo
mismatch, since only numeric variables may receive a numeric wvalue.

gL

Exception to the last paragraph: 1¥f the CALL passes no parameter
BASIC XL does nothing at all to the parameter passing area. Thiz
on purpose, since passing parameters takes time. Thus, esven
PROCEDURE expecting only numeric parameter{(z) may report a mismat:
error, since it attempts to obtain those parameters from th
miscellaneous data left in the parameter area. Generall»,
recommend passing the correct number of parameters unless you have

r

specific purpose which can use the "default" <feature to =
advantage.

T oan

i

) U

04
o

{2) You must be careful when changing the value of a simple =trin
passed as a parameter. Recall that the length of a CALLing =trinr
variable i= found in its variable value table entry, and that 5
entry is copied intact to the PROCEDURE’s string variable. If »co

1£1 a0

g

[

F’age bl %} ' BXL Toold

n

then change the length of the string within the procedure block, i+
will indeed change the PROCEDURE wvariable’s entry. However, when »ou
EXIT, the entr» iz not automatically copied back to the CaAlLler =
variable! Thiz can produce some bizarre results.

To demonstrate: modify line 8@ of the last example program to read
88 X#="Laugh" : Print X%

Mot surprisinaly, the new Print in line 8@ showes us that the contents
of X$ are simply "Laugh". However, look at the display resulting fraom
line 28@:

Laughing is fun. Right?

Do vou see the problem we warned of? Changing X$ in line 28 changed
the memory at the address which Fun$ alsc used for its contentz, but
it did not change the length of Fun$. Presumably, this could ke =a
feature under the right circumstances, but there are s=ztranger
consequences possible. For example, try changing line 88 to read

88 XE="XXX"

Mow line 38°s Print will display

XxXXmming is fun. FRight?

which is almost surely not we wanted.

One solution to this situation is simply to avaoid changing & passed
string within a procedure block. This may not be satisfactory,
though, s we have provided ancther mechaniesm which you can use b
circumvent the problem: Change lines 280 and 98 in the origirnal

program to read
268 CALL "What Fun" USING 'Fun® TO 'Funs$
78 EXIT !'X#$

EXIT will be discussed in more detail in section 3.3.3, but suffi--
zay that this seguence guarantees that the complete new value of X$
copied back to Fun$®., On this same topic, you may be relieved to wrnczw
that the difficulty with length does not exist with arrare, eithe- o+
strings or numeric values.

o

(Z) 0One way to get in real trouble with either stringe or arrax
te pass back <wia EXIT) one which was not pacszed in a=z= a CA
parameter. Examine the following program excerpt:

168 CALL "Oops" To 'As$

i1@ CALL "QOops" To 'EBE$

128 Print A$,B¥ : End

3686 PROCEDURE "QOops®

318 Input "Type something: ",Line#

328 EXIT !'Line%$

t -
bl -

™

I¥f »ou enter and RUN this program, qQiving a different response ezxch
time you are prompted, rou will be surprised at the results of tne
FRINT of line 128: A% and B$ will be identical fup to the length of
the shorter), taking on the walue of your second INPUT. I+ you recs’;
cur discussion of what actually gets passed when & string or array =
involved, this seemingly bizarre result can be explained.

w
b3
(]
e

BXL ToolKit ' Fa

When »ou paszz LINE$ back to the CAlLLer,

¥ou are actually transferring

the contentz of LINE$ "= wvariable waluy
*.

1

e table entry toc firzt A% zno
f= Camong other things? of
] three variables pointing tao

then to B$. But that table entry consis
LINE$ = addres=. Thus »ou end up with =z
the same piece of memory!

Once again, the proper solution is to pase & string both 10 wisx

USING and back out wia EXIT. For arrars f(of either =tringsz ar

number=z>, you need only pass the value in, <ince anvthing the

PROCEDURE dces toc a parameter array is properly reflected in the
Vwal

CALLer "= criginal walueis=zl.

The only way wou can get in trouble with arrays is i vou paszz an
undimensioned arrar to a procedure block which then dimensicne it,
Unlese vou pase back the "value" via EXIT {(similar tg the fixz +far
ztrings Jjust given abowve), the zpace dimencsioned within the btlock z
simply 1lost, since no wariable will any longer be referring to it iz
the address porticon of its entry in the variable value table.

w
.

When in doubt, thenm, pass strings and arrars both wayrs,. It
hurt. It mav help.

14> Finally, ancther caution. A PROCEDURE must be the +firszt
ztatement on a line. CALL can not find a PROCEDURE if is not at the
beginning of =2 line., Sitrange and wondrouszs and woefully unpredictabli=

things can happen if »ou wiolate this rule.

Similarly, wou should never allow a2 program to "fall through" to
PROCEDURE. Alwars make <sure that the program immediately precedin
each PROCEDURE +finishes with a GOTO, STOP, END, RETURN, o
EXIT =statement. ke recommend grouping all procedure blocks st o=
spot in ¥our program and ensuring that they are preceded b ¥
END statement.

o

F‘agE' Sd E:}‘L TCH::] = 1’

3.3.2 CALL
Format: CALL cname [USING cvarl,cvar...13 7O pvarl,puar...2]

Examples: 16 CALL "Test"
728 CaAlLL "Totals" USING 'VYalues(: T2 Zum
868 CALL "Get Num" TO Number
188 CALL Proce USING P,'A$ TO Result

The CALL <cstatement has been discussed and demonstrated in baoth the
introduction ta this chapter and in the explanation of the
PROCEDURE =ta:ement (zection P.12>. In this section, then. we will not
dwell on zuch thirgs asz the mechanics of parameter passing. FRather we
will discuss the subtleties of the CALL statement itself.

First, wunlike a PROCEDURE cstatement, the name specified by a CALL maxr

be contained within a string wariable instead of being a =tring
literal {zee the last of the above example lines). However, »ou haus
no other choice of format than that shown. You may use neither =
substring nor an element of & string array as a CAlLlLed name. Th:=z
stricture was necessary for consistency, in order to allow the =wvntax
te be az close as posszible to that of PROCEDURE. The alternatiuve was
using a comma instead of the word USING.> This is not an onercus

restriction, though, az the great bulk of a11 calls will probabl - b
made with lTiteral =ztrings.

hg

For those rare cccasions where rou wish to choose one of =euveral
PROCEDUREs based on the walue of zome index, may we suggest a prooram
format =imilar to the following:

28 Input "Give me an index > ",Index

40 MName¥=Proc$(Index;)> : CALL Name$
Remember, also, that the name which you CALL with (whether 1iteraz: -

variable) must match exactly that given in a PROCEDURE statement.
characters are considered in the match (including leading or traz:
spaces), with upper case, lower case, and inverse video all dist,r -

Second, we remind you of the possible problem associated with usir
string wvariable as a CALLing parameter (if its length is modi+f:
the procedure block, the length change ies not wvisible ¢tz
CALLer——see section P.1). Generally, it is good form to alwarz =
simple string wvariable as both a calling and returning params-
thus:

B8

2?29 CALL "Invert String" USING !Gorp$ TQ !Gorps$

Similarly, any array which may not be dimensioned at the time of Tt =
CALL should receive the same treatment. Recall cur earlier cautic: =,
also: DIMensioned arrars need not be passed back to the CALL
routine, but they must be passed in as parameters,.

BXL ToolKit F

Y
bl
)

Nl

Secondary Considerations

The rnumber of 1 z »ou mayr nest CALLs iz lTimited onl~ bv $he amount

of FREe memary lef in vour =vstem which mayr be used by trne FRun-Tims

Stack. Like GOSUBs and WHILE=z, each CALL uvzes four 78> bwtes of
Sn&a

Fur-Time Stack space. Each parameter passed (either expressiocn uwalue
or string/arrar references occcupies 12 byptes., A demansiraticon of the
implications of theze facts mar be t+tound in the example programsz n
the ne«t chapter {(zee especially the FACTORIAL praogram),

CALLz are =slow wnen compared to GOSUB line—-number in BASIC «iL-

FAST mode. Howeuer, when compared to normal GOSUBs in sicw mode, thew
maw actuaily be just a bit faster if they do not pass parameters.
Farameter paszsing can, indeed, slow things down remarkably, But, whern
»ou compare it toe the method of doing several azsignmentz before 2
GOSUB fclilowed v one or more afterward, it may actually zave time i

zome =ituations.

Within a CALLsd procedure block, ryou must pnever attempt to POP i

parameter wariables. You can cause a system crash if wou POP =
variable with the wrorng value. Only if a procedure block has neithszr
parameters nor LOCAL vwariables may you safely POP the CALL itself. Lle
recommend that vou do not use POP anywhere in a procedure block unieszs
absolutely necessary.

Page =4 BXL Tooloit

3.3.3 LOCAL

Format: LOCAL avar [,avar ...]

Examples: 738 LOCAL Templ
1278 LOCAL Sum,N,Count,Misc

The LOCAL statements has been provided to allow you more flexibilits
in your programming. While the parameterz received br a PROCEDURE zre
automatically made local to that procedure blozk, there are many times
when »ou need & simple variable to hold a temporary value, such as the
result of a calculation, a flag, etc. LOCAL qives you such temporarw
variables.

LOCAL workes in a very simple <fashion. When a LOCAL statement i
executed, all simple arithmetic variable names <no strings or arrav
allowed) following it are "pushed" onto BASIC XL"s run-time stack oth
same =stack which receives GOSUBs, FORs, CALL3, etc.). Then, when

subszequent EXIT is encountered, all such LOCAL variables zare pulied

oOEan

i

back off the stack and put in their original places. The effect of
this is simple yet powerful: within the bounds of LOCAL and EXIT, »ou
may change the value of any of these variables te your heart’s content

without worrying about whether some other rcocutine in your program is
using a variable with the same name.

A simple example will help:

18 Test=12345&47 : Print 18,Test
28 Gosub 48 : Print 28,Tecst

28 End '

4@ Local Test : Print 40,Test
58 Te=t=0.54321 : Print 58,Test
48 Exit

MNote that PRINT statements purposely display the current line number
as well as the walue of Test., This is simply to make tracing the +1ow
of the program easier. Does it surprise you to find that the cutput
of the above program will look something 1ike this? ‘

1@ 1234567
4@ 12345467
o 8.54321
28 1234567
Let‘s examine that program a little closer. First, line 18 iz =impl=

enocugh. We just assign a value to the variable and verify that it hzas
been accepted. In line 28, we first GOSUB to & routine and then zgzain
display the contents of our wvariable. Note that in the program’
running this PRINT of Test is the last thing executed <(other ¢t
END> .

i
Fran

Line 48, then, bteqgins the interesting part of this program. ks

declare that Test i= a LOCAL variables and, once again, displar its
value. Line S8 is a repeat of 1line 18 except that we asziagn =
different value to our wvariable. Note that the PRINT verifiez ocur
change. Finally, in line 68, we use another new statement, EXIT, o

restore our variable to its original value, as shown by the PRINT in
line 20,

f=—g —

BXL ToolKit’ Fa

n
[Ju]
hd

Once again, the point of all this was that our subrcutine ‘linez 48
28 could do what it liked with the now-LOCAL variable withoyt
itz walue in the rest of the program.

Secondary Considerations

Some things are made cbvious in the above program which bear natice:
{1 LOCAL doces not have to be used in conjunction with a2 PRGCEDURE.
{2y The value of & wvariable which ie made LOCAL docez nat change

because of the push onto the Run-Time stack. 'We will attack theéé
point=s in order.

The fact that LOCAL mar be used with GOSUB-type subroutiresz iz rnot an
accident. EXIT waz specially constructed to examine what invcoked |tz
zubroutine and handle the returning condition appropriately teither

GOSUB or CALL onty, though>. This small fact alcne may allow »ou to
change many programs to use LOCAL without the need to modifs al)
GOSUB=s to CALLs.

Also, there are occasions where 1t could be advantagecouz to
GOSUB inmstead of CALL. In particular, GOSUB to an absolute J
number is significantly quicker when »our program is in FAST mode ¢
any other trpe of subroutine access. A mild warning, thou
LOCAL doces occupy precious processing time, so you may do best to

truly unigue variable names in & routine which must be super fazt.>

[

- -
w2 oan
B]

[Tl
-

[
"
L

Qur =zecond point, the fact that variables do not change valus when
they are made LOCAL can actually be used to advantage in a few cCaze=z.
Try» the following =mall example program:

1@ Inmput "An integer greater thamn 1, please >> ", N
28 Sum=@ : Gosub 5S4

2@ Print "The sum of integers from 1 to “;N;" is ";Sum
48 End

S8 Local N

&8 Sum = Sum+hd

78 I M=1 Then Exit
88 N=N-1 : Go=ub S8
@8 Exit

To follow what happens here, assume that we choose a value of 2 -:-
our integer. The first time lines S8 through 72 are executed, t
Sum will take on the walue of 3 and, since N is not 1, we continu
tc line 88. There N iz given a value of 2 (one less thanm its cur
value), and we again call the subroutine at line S@a.

The second time through, the same things happen: Sum acquires a walus
of . 5 and we do not wet do the Exit of line 78, In line 8@, N =z uvzluye
changes to 1 and line 3@ is called once again.

This third time pertorming the <came lines cees limes S8 and =0
performing as before, with Sum getting a new value of 6. Im Vine T2,
though, since N now has a walue of | we do take the Exit. ble return
to the Gosub of line 268, fall thrcough to line %8, return to lins 2o
again, fall through to line %8 again, and Cat last!> return to the

original Gosub of line 2@.

Fage Sé& ’ BxL Tocolk:t

Through &l of those Exits, BRSIC XL was Keeping ftrack of the proper
value of N at sach level, so line 38 displars accurate and =sencsible
rezults for both N ard Sum. Whew,

Finmal conmnsideraticns:

Since »ou are still limited to 128 different variable names,
long programs you might do well to use the same LOCAL variable E}
in all PROCEDURE= and =ubroutines. For example, »cu might start =z
zuch routine with a line like this:

2118 Local Templ,Temp2,Temp3,Tempd
Each routine then has four variables available exclusively for itz cwn
ysze; and, ret, you have used a total of only four names From wour
max imum of 128,

Also, since the statements built into your original BASIC XL cartridge

do not understand the concept of wvariables being pushed onto the
Run-Time stack, »ou must alwars use Local only at the beginning of
subroutines and onlx in conjunction with routines ending with tr=

Exit kevword. Im particular, pnever try to POP a wvariable which =&
been made Local.

EXL ToolKit Fa =7

Dl
Tl
O]

3.3.4 EXIT

Format: EZIT [cparm [,cparm ... 1 1

Exzanples: 2%8 EXIT 1@sMaxwvalue
799 EXIT Flag,!'Names#$
24928 EXIT !'Inverce!(),Rows,Calumns

835 EXIT
1 you have been reading this instruction manual in front to back
arder, vou have encourtered several examples cf the uce of EXIT (-
now . I vou have nat, we refer »ou to sections 3.3, 3.3.2, and 32.3.=

for come illustrative examples.

Just as Return is a partner to Gosub, zo is Exit a partner to Call.,
Every Procedure which »ou invoke wia Call must end with an
Exit statement.

Exit performs three functions, in the following order: (1) I ‘*t:zre
are any parameters after the Exit Kerword, they are placed into E&ZIC

“«L"s parameter-pasz=ing area, for use by the TO-Keyword’s proceszing
twhich i<, in turn, part of the work which Call does). 2y If thers
are any variables on the run—-time stack (either as a result of using =
Local statement or needing to save the parameter wvariablez of =
Procedure?, Exit must reztore them to their proper places in the wari-
able wvalue table. (3 Exit checks to see whether the current zut-

rodtine was invoked via Call or Gosub. 1 via the latter, Exit om-
ulates the action of a Return statement;: otherwise, it performsz 5=
special processing needed to allow TO to access its parameters o F
anyd.

Secondary Considerations

In common with the other stack pulling statements (Return, Endwhile,
Next), if Exit discovers a For on the Run-Time stack which dao:- :
"belong" there, it ignores it (e.g., it "throws it away") and - -:
the next entry on the stack. For example, the following program
not cause.an errar:

18 Gosub S50

28 End

S8 Rem === Subroutine ===
48 For I=1 To S

78 Exit

Even though the For lcop started in line &8 has not finighed (arnz
thus still sitting on the stack), Exit has no trouble finding thar ‘=
subroutine was called via the Gosub of line 10.

On the other hand, this program will cause a ‘nesting’ error becsz_.:=
While can only be terminated by Endwhile!
18 Gosub 56

26 End

S8 Rem === Subroutine ===

4@ While 1 : Rem (a never ending loop)
78 Exit

Page S8 BXL Towo::

Arnother thing to be careful of is that no error will

result ¥+ ar
Exit ztztement triez to pass parameter values back o a2 Gosub
Inz=tead, they are <simply Ignored. (The reason for this, again, 1=
that the cartridge BASIC XL is not prepared for such things, =zo t
doesz not chesck for them.?
Similariy, if »you pass back too many parameterz to & Call, the exceszz
cnes will be ignored. This desigr allows a single Procedure to =serue
more than one function, returning more values toc some Callers= than to
others=. Femember, though, that all parametere expecied bhbw» the
TO puortion of & Call statement must be matched by trpe b» the parz-—
meterz of Exi1t f{e.g.,. & string wvariable to a string wvariable, =
numeric sxpression to a numeric variabled>. The matching rieeded iz the
zame asz that needed by parameters passed toc a Procedure uvix & Call.
See section 2.2.1 for more details,
Zince rou can never properly Pop variables, you may not use Pop in =

subroutine which uszes eitther Local variables or Procedure parametzr
variables. Thanks to the fact that Exit may return a parameter uvzaliusz,
we find little need to use Pop in these circumstances anrwar,. =
better method iz illustrated here:

18 While

15 Call "Demo 1"

z8 Endwhile

S8 Procedure "Demo 1"

S5 MN=Random(&) : Call "Demo 2" Using N To Flag,Inverse
48 I+ Flag Then Exit

A% Print "The inverse of "i;N;3" is "i;lnverse
7B Exit

25 Procedure "Democ 2" Using Value

28 Trap 25 @ Exit 8,1/Value

9% Exit 1

The trick in this program is embodied in lines 98 to %5. Im Vime <>
we first set up a Trap to line %93, in case an error occurs. PBut wh--=:
can an error occur? Certainly not in the evaluation of the _
following the Exit. But what about when we evaluate 1/Value™ '~
Value iz zeroc, thiszs expression will cause caverflow, an errcr o:o-
dition. If the error occurs, the Trap will szend us off tc line 77,
where we =zimply return the flag value of one, indicating failure,.

Line 48 is where we check the value of the returned flag. I+ i 2
non-zerc, we immediately Exit rather than displaring the results., 7=
»au see why this is cleaner than using a Pop <ctatement? Aside from
the fact that the flow of the program becomes much more readable, =
could add many Local variablez at any point in this program without
advercsely affecting ite functioning. ‘

Thise concludes our presentation of the BASIC XL ToolKit «

dtended
statements which relate to Procedure blocks. See also section 4 +-r
dizscussions of the example programs provided on your ToclKit disk.

BXL ToolKit Fa

g
i
g
x|
0

3.4 Sorting String Arrays

ppart from the PROCEDURE blocks described in Section 2, the aonlys
extended BASIC XL statements included with thiz ToolKi are thosze
which allow you to easily sort a string array. There are two such
ztatements, SORTUP and SORTDOWN, which are described formally in

Sections 2.4.1 and 2.4.2 (recspectively>. However, since bath zorting

2.
t

statements have many foibles in common, we thought it best ta begin
with zome comments and hints about their use.

First and 4dremost, note that SORTUP and SORTDOWN can only be uzed
zort string arrars. In their simplest form, they are extremely e
to use. For example, consider the following short program:

18 Dim Array$(5,28))

28 For I=1 To 5 : Input Array$il;> : Next I
38 Scortup Arravs

48 For I=1 To S : Print Array$(I;> : Next I
@ Run

This program simply allows wou to INPUT five strings, sorts them, and
then shows show the sorted order. &t this time, we would like to
suggest that you boot a copy of side Z of your master Tooliit
diskette., Then type in this program and try it out. <(Keep it arcund.
We will use it more later.?> Give several sets of common and uncommon
words as answers. Note how neatly it sorts the words into ascending
arder.

Or does it? Try entering some words in upper case and some in ocwer
case. What happens? Doe=z it surprise you to find that "ZOO" comesz
before "apple"? Actually, the reason for this behavior is rezdilw

understood once you realize that SORTUP works on characters uzi
ATASCII ordering (ATari verszion of ASCII, the American Standards L=
for Information Interchange—--hoaw’z that for a mouthful). For 2z 1

of ATASCII codes as= they relate to your computer’s Kerboard, ==
Appendix D of the BASIC XL Reference Manual.

]

e

.
il

-
i

+

10
"

Even if we restrict ourselves toc the "printable” characters in th
ATASCII zet (usually the numbers, upper and lower case letters,
standard typewriter—-style symbole--codes numbered 32 through 123
the manual), we find no real help. Numbers come before upper
letters which come before lower case letterz, but symbol:
intermixed in no real useful fashion.

w
Li o

o -
D

i

|

(]
o
D

Because the effects of this hodgepodge crdering may not be desirables
in a sorted list, you may wish to 1imit a SORTUP or SORTDOWN tc work
with only part of each e¢lement of a string array. For example, if »ou
have an array where each string within it contains both a perzon’=
name and their phone number, you may wish to perform a sort base
solely on names. Further, to ensure that the sorted order i
consistent, you may wish to encsure that the names being sorted ar
stored as upper case letters only.

R

oo

Page &@ ’ BXL Tocolkit

Fortunately, the design of SORTUP and SORTDOWN is good encugh that
sarting based con "fields" (portions of each element in the string
array) iz extremely easy. And, while BASIC XL does not provide =

built-in methaod of obtaining upper—-case-and-non-—inverse-video—anly
strings, it isn’t very hard to build a routine which will dg the rea

al

work for you. For example, the following PROCEDURE converts =11
characters in itz parameter string <nct a =tring array? to non-ifverse
video and converts lower case letters to upper case:

888 Procedure "To Upper" Using String$

218 Local I,Temp

228 For I=1 To Len{(String$®)

aza Temp=mesci{String${lr) & $7F

248 If Temp>$48 And Temp<$7B Then Temp=Temp & $5F

a5a String$(l,1)=Chr${Temp>

248 Next 1

gre Exit
For now, don’t enter that subroutine.
Instead, let’s investigate the concept of “"fields", as menticned

above. Just change line 3@ in that little program we typed in earlicr
o that a LIST gives you the following:

18 Dim Arrar$(35,26)>

28 For I=1 To S @ Input Array$(l;> : Next I
30 SORTUP Arrax® USING ;3 3,5

48 For I=1 Ta T : Print Array$(l;) : Next I
58 Run

Once again, enter some strings in response to INPUT’s prompt. This
time, though, par special attention to the third through +fifth
characters of each string. Notice anything funny about the =cr
order? That’s right, it is based sclely on the <characters in tr.
positions. If wvou have worked with BASIC XL string arrays at all »=
the notation in line 38 may be both familiar and confusing. Ferhz
changing line 48 as follows will allow us to clarify the meaninsg
line 38:

4@ For I=1 To S : Print Array$(l;2,5) ,Array$(I;) : MNext !

This 1little example should serve to remind you that you may re

ferz- -
characters within an element of a string array just as easily =2z . -
may reference them in an ordinary string. The "magic" character =
the szemi—-colaon. It separates the array element number from -z
desired character positions. (And, as the second usage of Array® -
that =same line shows, the semi-colon is alwars necessary when

referring to an element of a string array.)

Now, since the SORTUP of line 20 refers to the entire array, String$
there is no need for the following parentheses (and, indeed, thesy =zrs=
not allowed)., Instead, the Keyword USING tells PASIC XL that we .1}
be working with only part of the array andfor its elements. Iri
particular, the semi-colon following USING again serves as & remincdsar
that the numeric expressions following it refer to character positianz
within an element (or, more properly when using SORTUP or SORTDOWN,
within all elements) of a string arrayr.

BXL ToolKit ‘ F

Py
U]
T
r
V-

By the war, as a simple variation on what we have dore zc far, vou
might change line 28 to read:

3@ SORTDOWN Arrard USING ; 3,5
Again, try it cut, Mot too surpricsed by the results? Good., The anlw

1t
difference between SORTUP and SORTDOWN is where the "top" of the =sort
{the "largest" string) appears.

There is one last capability of the sorting =tatements which we wil)
discuss before moving on to other helpful hinte. The program we hauve
heen working with seems all fine and good if we want to enter
exactly five elements into the array. Suppose, though, that we did

not Know how many elements we would be working with., Fear rnot, EBaSIC
XL’s extended statements shall provide. Time for ancther example:

18 Dim String#®{2a,28)

28 For I=1 To 28 : Input String®{l;>

25 If Len{String®(l;>> Then MNext I

3@ Sortup String® Using 1,1-1

4@ For J=1 To I-1 : Print Htrlng$(J;) : Next J

S8 Run
The first change you will notice is in lines 28 and Z25. Instead o+
blindly continuing to ask for INPUT until 20 items have been entsrcd,
the program only goes back for ancther if the length of the current
item is non-zero. That means that wou may stop entering itemsz at =zrn-
time by hitting the RETURN Key alone in response to any INPUT prompt
And locok at SORTUP in line 38. Can »ou guess what Using 1,I-1 i=s =z
That’'= right, onl» the first 1-1 elements of the array will be zor tej
And if, for some reason, »ou wanted to never sort the first element of

the array, »ou could have coded
26 Sortup String$ Using 2,1-1

(Why would you ever do that? Well, marbe »ou Keep special infarmzxt -
about a file in the first "record" of the file, thus having the ac*. 2.
data start at the second "record".)? In fact, »ou are not lTimited =
to which elements may be sorted other than having to follow two ruie
(1> The maximum element number to be sorted must be greater thar or
equal to the minimum element number. <(2) Each number must be wi*- -
the bound of the array, as dimenszicned.

11

"t

NMaturally, we have to giQe you the last of the poszible variaticonz o
SORTUP (and, similarly, on SORTDOWN). We won’t explain this, Ju
type it in and try it:

ur
r

38 Sortup String$ Using 1,I-1 ; 2,4

Mow for some hint=.

-0
o
i
Ly
o
[3Y]

BXL Teoolk:*

We already noted that it is probably a good idea to reztrict the
contents of a normal alphabetic +ield to wupper-case, non-inversze
characters onlx, Suppoze, though, that »you really want to =zor* some
numbers. What car rou do? A program such as the following will
oot work:

i@ Dim Strings(S,26)

280 For I=1i To S : Input N : String®{l;)=Stre(N> : Meuxt I
28 Sortup String$

4@ For I=1 To 9 : Print String${l;> : Next !

S8 Fun

Wh» not? ell, try szome numbers in response tc the INPUT prompis and
see what happens. May we suggest values of 1, 11, 111, 2, and 22 +ar
your test. When we tried those numbers, BASIC XL told usz that the
order was

1

11

111

2

e
L

[x\]

If wou thinkK about the ATASCII values of those characters {and thew
are characters, =since they are in a string) for a bit, you wi':
realize that those are the proper results. The problem, then, iz o
make numbers appear in a string in a fashion such that the =or+

ctatements can handle them.

We could present a complete soclution here, but we leave that faor =
program on the ToolKit disk (called SORTNUM.BXL). We will, haws: =~

consider at least the case of sorting positive integers, which ~-3.
cover all the cases »you will ever need.

18 Dim Stringdi{S,18>

28 For I=1 To S : Input N : String${l;)="00600000800"
25 String¥{l;li-Leni{Stre(NI)))> = Stre(N) : Next I

3@ Scortup String$

48 For I=1 To S : Print String®<I;> : Next I

.S58 Run

We have altered line 28 and added line 25. The trick here iz n
terribly obscure: We first i1l the pertinent element of the
array with place-holding zeroes. Then we position our integer
proper location within that field of zeroces. Since all npumber=z
represented in ATASCII)> are now the same length, it is onl+ - -
significant digits which affect the sort process. Try it and ss=e.

-

£

ORI W]

Note that there is no protection in this program to Keep wou <+- .=
entering a number which is not a positive integer. Purists migh+t :::
line 22:
22 T4 NOIntdN) Or N(@ Or N>=1E1@ Then Print "Bad number":Stcr
And, if you prefer a neater looking numeric print-out, you can chs=
line 4@ to:
48 For I=1 To S : Print Val(String$(I;)) : Next I

We at 0SS can see many uses for SORTUP and SORTDOWN. Again, we irn~ -=
you to peruse the sorting demo programs on the ToolKit disk. FPern-:
vau can find a use for some of the techniques in your own programsz,.

EXL ToolKit Face -1

12

Tl
!

3.4.1 SORTUP

Format: SORTUP zawvar [USING [aexp TO aexpl [3 aexp,aex

E:

w

mples: SORTUP Stringarrar$
SORTUP aArrav® USING Mirn TO Max
SORTUR X% ; 1,4
SORTUFR X% Using S To 1@ ;3 4,8

This =tatement will sort zelectea elements of a zpeciftied

in ascending order, bzsed on the contentz of a <selected

"fielcd">» of each element of the array. Unless otherwise

the uger, the field of each element which forme the bacis

zhall consist of the entirety of each element. Unles
zpecified by the user, all elements of the array will be
be sorted.

The user may choose the beginnmning element of the range of element=z ta

[

string arraxr

p or
zpec
for

= Ci

tion Y
ified b
the =art
therwiza

selected tao

be =sorted by coding the Keyword USING followed by an arithmesic
expression., If a beginning element i= so specified, an ending =lement

must alzo be given by ar arithmetic expression following
TO. '

the

The user mar chocse the beginning position of the field

element which forms the basis of the sort by

nat =selected by the user (see preceding paragraph?,
USING must precede the semi-colon.

coding

semi—-colon followed by an arithmetic expression. If a beginning posi
tion is =so specified, an ending position must also be given br a
arithmetic expression following a comma. If a range of elements ua:

the

Secondary considerations: (1) The sort is done in ascending

arder . (2 I+ the length of an element is less than the er

the +i<°
shall be shortened accordingly. Thie condition applies regardlssz:z :
{(Note thas

position of the field being used as the basis of the sort,

whether the field iz specified implicitly or explicitly,

if two compared Ffields are equal except that one ie longer
other, the longer one is greater than the shorter one. This i

tively correct as well as being consistent with <string
made with other BASIC XL statements and cperations.?

Page &9

BXL

= intu.
campari ooz

Ke sz d

in sach

woC

2

WLl

kKewwar:

by e

ot

tharm 5

| b

Tool it

3.4.2 SORTDOWN

Format: SORTDOWN savar [USING [aexp TO aexpl] [; aexp,aexp 1 1

Examples: SORTDOWN Stringarrar$
SORTDOWN Arraxy$d USIMNG Min TO Max
SORTDOWN X% ; 1,4
SORTDOWN X% Using & To 18 ; 4,8

This ztatement will sort selected elements of a specified string arraxr
in descending order, based on the contents of a selected portion (a
"field") of each element of the array. Unless otherwise specified b
the user, the field of each element which forms the basis for the scrt
zhall conzsist of the entirety of each element. Unless ctherwice
specified by the user, all elements of the array will be selected to
be sorted.

The wuser may choose the beginning element of the range of elements o
be sorted by coding the Keyword USING followed by an arithmetic
expression. If & beginning element is so specified, an ending slement
must also be given by an arithmetic expression following the Kerword
TO.

The user may chocse the beginning position of the field in e2ach
element which forms the basis of the sort by coding =z
semi-colon followed by an arithmetic expression. If a beginning posi-
tion is so specified, an ending position must also be given b» an
arithmetic expresszion following a comma. If a range of elementsz was
not selected by the wuser <(see preceding paragraph), the Kerwaord
USING must precede the semi-colon.

Secondary considerations: 1) The sort is done in descending ATAZCII

order. (2) If the length of an element is 1less than the ending
position of the field being used as the basis of the sort, the fieid
shall be cshortened accordingly. This condition applies regardless of

whether the field iz specified implicitly or explicitly. <(Note thazt
if two compared fields are equal except that one is longer than ‘*hs
other, the longer one is greater than the shorter one. This is intui-
tively correct as well as being consistent with string comparizcnsz
made with other BASIC XL statements and operations.?

BXL TocolKit" =¥

o
T
i)
.
i

CHAaFRPTER <4

Example BASIC XL Frograms
vwi th
Extended Statemen ts=

This chapter gives examples of programs written using the extended
statements presented in Chapter 2. Three of the programs here (those
in Sections 4.1, 4.2, and 4.3) are "brand new", presenting aspects of
the extended =z=tatements which are vwery difficult to duplicate in BASI!

XL for any BASICY without the wunique capabilities of the extendeé
statements. G+ necessity, then, their descriptions are scmewhat
detailed.

The other three programs are retreads of three of our old friends freom
Chapter 2. We present them again here to show you how you cam turn =
hard-to-read program riddled with GOSUBs into a well struc*tyrzd
exercise., For these programs, only the significant differences +from
their originals are noted. You are invited to peruse the descripticrns
in Chapter 2 for details on other parts of these programs.

Fage && ‘ BXL Tool:s ¢

4.1 FACTOR.BXE

For such a short program, this will be a rather long explanation., The
program given here is actually one of the classic cnez used to sheow
how recurcion works: We calculate the factzrial af & number

.
repetitive calls to a procedure.
Now, actuallyw, this is a fairly inefficient wav to calculats =

factorial. Perhaps the simplest way is the following little program:
1@ Input "Give me a positive integer> ",N

20 P=1
20 For I=1 To N: P=FP*I: Mext 1
48 Print N; "! is "3 P

Soa if all you want is the factorial of a number, use the abkove routire
and forget about the democ on the dizk. But if vou want to understand
how recursion works, rexd on.

I you will examine a listing of FACTOR.BXE, you will find the firz=
part, lines 186 through 228, rather ordinary and mundane. The
possible sole exception iz the CALL to the Factorial procedure, whers
we pass in a number and expect a result,

But now look at the Factorial procedure itsel+. I+ wyou recall o
discussion of procedure parametersz and local variables in Sectiaon 3.3,
you probably aren’t too surprised to find the names used in the mair
routine reused here= in the procedure. Recall also that the effect of
using an arithmetic wariable either as a parameter (i.e., Number in
this example) or as a Local variable <(i.e., Result) is that, upaon

Exit from the Procedure, its original value is restored. Now, there
isn’t really anr reascn to uce these same variable names again in thi=
program other than as a teaching mechanism, but its a fairly effect .
mechanism.

1t

Well, once we get pazt the Procedure and Local declarations, *hers
isn“t much left to the routine, so let’ s examine it in close detazi].

Since the main code ensured that we would, indeed, use a pozit =
integer for Number, we Know that we have a number which will producs
valid factorial. Now, the factorial of 1 is 1, so line 2280 ma.:=z
sense: If the parameter is 1, then Exit with an answer of 1. Simpi-=.
Clean. Neat.

Y

Just as an exercise, let’s assume that we want the factorial o 23

Okay, Number is not 1, so we get to line 29@. How about that? L
turn around and Call ourselves again, but this time cur calling

parameter has a value of 2 (...Using Number-1...). Let’s Keep going.

T .

ble“re back at line 228. But Number now has a value of 2, so we dont
take the Exit here. Instead, we once again Call ocurselves. Feadsr <=
Keep going?

Back at line 220, Number ncw has a value of 1. aAha! Finally, we Ze-
‘to Exit with a value of 1. But wait a minute? Certainly 2' iz not L
is it? Not to worry. Remember, the last time we Called ' :

procedure, we did =o from line 298, when Number had a value of 2
Qkay, s0 we return back to that same line 298, and Result gets a waly

P

T

of 1. Then we <continue on to line 308, where we Exit with whaz-=

BXL ToalKit F -

u.l
[Iu]
i
"t

Well, we just éaid Result is 1, and since Number had a value of 2 when
line 278 made the Call, that value has been rectored by now Caz
noted above’. Sc Number#*#Result is 2%1, and we Exit with a value of 2.

Eut where do we Exit back to? Well, we gat rid of the last of t
Calls on that last Exit, so this time we end up back at i ,nse 2% i
the time we Calied with Number equal to 3, and Result get:z =z walue of
2. By the same logic, we continue to line 2388 and Exit w,th 3%2,

Thnis time, though, we nhave dispensed with all- the Calls except the
original one, in line 198, so that Result gets the Exit walue of 3%2.
or &. Noila! 3! is truly &6, as we wanted.

hil

There was nothing magic about our choice of 3 for our example. Th
principle holds no matter what the value we use: Keep calling th
procedure with succesively smaller values until the value reachesz 1
Then start Exiting back wup the Call chain, multiplying az we oo
Terribly inefficient, but a beautiful example of <classical recurzic
at work.

)

)

o, do ~you <csee the advantage of truly local values, nat anlw +cor
parameters but for other explicitly declared wvariablecs? MNa™®)
think this was an artificially created example? Well, just wait...
have some more realistic examples coming up.

o

7

Technical Sidelight: By the way, try to discover the largest int
whose factorial can be represented within your Atari“s numeric r
vit’s less than 188>, Then try finding out what 166! is. EBang!'

got numeric overflow when the multiplies created a result larger
Atari floating point can represent. But for real fun, try findin:

T

o
i

PR

o

+
i
i

Bag

(TN
1

what 58088' is. Do rou understand why you got that error? Does -
help if we remind vou that each local or parameter variable usz:z 'Z=
bytes of memory? And that each Call itself uses 4 bhytes? Hmmm . . - -

much memory does your machine have? <(To get rid of all that jur: --
the stack, Jjust use the CLR command from the Ready prompt leuel.:

Page &8 BRL Too'- ¢

4.2 SORTDIR.BXE

Thiz izn’"t really = wery exciting pragram. All it dees iz read in
dizk directory and f{hen allow rou to choose which one of three wars
viou would like to see it sorted. Its primary purpose ig to zhow hBoow
vou maxr sort on different "fielde" within the =ingle "recard" each

element of a string array can represent.

180-238 Just the usual necessary set up. Note the namesz given to the
console Kevs; obviously not a necessary step, but ane which makes
2 prettier program., The FILE$() array is dimensioned large encuch
to hold the largest directory a standard DOS 2 disk will a1lcw.
If »our DOS allows more files, or if the entries in the directorsw
are langer, feel free to change the DIMensions.

2468, 6488 By now, wou are used toc seeing endless WHILE lcops in cur
programs. The beginning of this loop may be in the wrong placs
for »ou. @3 is, it reads the directory in off the disk each time
a new sort is done. Thiz is so that you can change diskettes |+
»au wish, It might have been better to at least give you & chance
to tell the proagram that vou have changed disks. Sounds Tike
goo programming exercise for »you to us.

oY

278-3486 This is an easy way to read in the directorw. The
LINE$ variable iz not really needed--you can INPUT directly into =
string arrar element if you wish--but it avoids having the "FREE
SECTORS" line end up in the array. Just a small nicety.

Notice how we depend on the space in the second character positiocn

for each directory line except the "xxx FREE SECTORS" of the firaz)
line.

356-398 Self-explanatory. Actually, we could have special cazed =
+

directory with a single file <(why bother to sort it?), but
ien’t necessary.,

488-488 rnfter presenting the menu, a beep (PUT #8,253) reminds wou - =
push a button. After you do, we clear the screen.

498-368 Thics i= what we really wanted to demonstrate. Depending =r
which button »ou pushed, we SORTUP based on a particular fis=!c.
The SORTUP statements of lines S@@, 528, and S48 are identi-z’

except for the numbers following the semicolon. Inspect a sinz’

line of the directory listing. Do you see how the numbers are t-=
character positions within the l1ine? Easy, isn‘t it.
Notice, aleso, that we do not sort the entire array. Rather, e

only sort the part which holds valid directory entries. fAlzc verw
easy, right?

588-448 Just & waxy to display the directory in two columns. Tr=
sorted listing reads down the first column and then down the
second. It would have been easzier to simply alternate, but *t- =z
is easier to =zcan vizually.

Again, feel free to modify this pragram to your liking.

BXL ToolKit Page <%

4.3 SORTNUM.BXE

In the presentation of the sort statements in section 2.3,
discussed a way to sort integers by converting them into a ccnesiszst
form in & string. This program presents a different and more gerne
way to sort the flcating point numbers which BaSIC XL fand &t

BASIC) uses.

L

0
i (]

+

N
0
-

i

L
-

5T I}

Performing this sort depends upon Knowing the internal format of
floating point numbers used by BASIC. The form is fairly simple:
single brte of sign and exponent followed by 1@ BCD digits, two ta
brte. The sign of the number is given by the uppermost bit of tha
first byte. The exponent is a power of 180 in what iz Known as
"excess—&4" form, {That means that the true power of 188 has &4 added
to it so that all expaonents appear as positive numbers. To form the
true exponent, then, subtract 84 from the byte after getting rid of
the sign bit.)

o Is

I¥ you study this format, you will discover a fortituitous occurrencse:

if you treat the six brtes of a positive number as if they were =
string, positive numbers will automatically be sorted correctly b«
SORTUP and SORTDOWN. Truthfully, this is not a coincidence. Internra)
to BASIC, such consistency is used for comparisons (e.g., as when wou

code something like IF A>B THEN...).

Gn the other hand, because negative numbers have that upper bit =zt,
they will all sort as larger than any positive number! Qops, to =za-
the least. Not only that, if you ignore the sign bit, the negxati
numbers look exactly like positive numbers, so they will be sorted in
reverse order. And, tinally, what about zero, which consists of =i
brtes of $887 Well, it is now time to examine the program listing =
zee how we turned adversity to advantage.

150-148 The only reason for the DUMMY$ string is to provide =zn

address for that single element numeric array. Recall that in
BASIC XL (and Atari BASIC), string and array variables always u:z=
memory in the order they are DIMensioned. Thus the addresz =of

VALUE has to be one greater than the address of DUMMYS$.

188 This array is actually going to hold our array of floating poicn
numbers. In fact, notice that it is the same size as an arrav
28 numbers. 0f course, we have to use a string array hbeca
SORTUP and SORTDOWN can only handle string arrays. That'= on!s
minor inconvenience, as we shall see.

1
T

n
[
(YT
R

o

288, 340 We‘re going to generate, manipulate, and display 28 rancom
numbers.

298 This is just to give each element of the array a LENgth of =i..
Otherwise, the sort process won‘’t Know how many bytes inm each
array element need sorting.

388 We generate random numbers in an arbitrary range, but one koo
iz easy to view,

318-328 See how we move the six bytes of the floating point numter

into the element of the string array? Didn"t Know wou could dao
that in BASIC?

Page 70 ' : BXL Toolkit

338 A1l we do here ic flip the state of the sign bit: if the number
was positive, it is now negative; and vice versa. NMNote the sffect
cof this: what were negative numbers will now sort as zmaller thar
what were positive numbers, Just think of that bit as

representing a plus sign now, instead of a minus sign,

348 We count all the numbers which were negative. Dan”t worry whx.
We’il show rou.

358 We just display the numbers in an easy to view form, Mixed

up
bunch of digits, aren“t they?

3786-388, 416-428 The only reason for these lines is so that wou can
see how fast the array is sorted. Pretty impressive, even if |t

is only 28 numbers. Feel free to try it with more.

398 Okay. This is obvious. Everything is now sorted very prettil.,

Except that plaving games with that sign bit didn“t fix the fact
that the negative numbers will be sorted backwards.

488 The magic. Because we Kept track of the count of rnegative
numbers, and becauce the SORTUP of line 398 put all the negative
numbers before the positive ones in the array, this warkz' Llle
simply re-sort the negative numbers in backward order via

SORTDOWN. You’ll simply have to RUN this program to believe it,

448-490 This Jloop Jjust displays the now sorted array. Note how we
now have to flip the sign bit back to its original state bGefore
moving it back to VALUE(8) for printing. Not very hard, right?
(Actually, we didn"t have to flip the bit. We could have mousd
the number as is and then printed —-VALUE(®) for the same effzct.
But the way shown is more orderly.)

That’s it. The best part of this method is that vyou could ezaczi!
incarporate the =ix byte "field" of the floating point number intc =
longer "record" sc that you could sort the array several ways, az =
did in the last section.

BXL ToolKit ' P

[y

U

T
J
—

4.4 GTIATEST.BXE

This i= the first of our ‘conversions" from a <standard BaZIC %L
version to one using extended statements. In the mainline cade, 1ir
1848 has been changed toc a CALL. The subraoutine starting at line Sua
has been turned into a PROCEDURE, and the variables used irn it haw
been made LOCAL <(line %880).

Ui

LS

Ll

b

D

Now, truthfully, there was little incentive to change this routine
into a Procedure. What have we saved? The variables are local, =o
they can qet wused for other purposes elsewhere in the program. &nd
zince we Exit with the tect value, the Caller doesn‘t have to zware of
name we use in the subroutine. Big deal.

No, the real reason we changed this program was ance Bga

instructicnal. We just wanted to show how easy it really js to u=s
Procedures and write readable code. There’s more to come.

F‘age ?2 B}-(L T!:u:n’g‘-_' *

4.5 DISKIO.BXE

Another fairly simple conversion from the original standard BASIC wL
proqgram, This time, though, there is a little more justification for
using Procedures,

Just look at lines 9348, 9606, 9628, and 9668. What cov'd be clearer?

Just think: vyou could have an entire library of Procedures sitting
around on disks. And you could Keep a listing of just the entr
fProcedure) and Exit 1lines. You almost wouldn‘t need anv octher

documentation, would you?

Watch how easy it is to use these routines if the code from 7aga up Q=
included in your code:
. 1@ Dim High$(128) : High$="00008000800"
28 Call "Read Sector" Using !,720,Adr(High$),1 To Te=zt
38 Print "High score is ";i;Val(Highs$)
4@ Input "New high score ? ",High
S8 High$=Str$(High),Chr&($oB)
6@ Call "Write Sector" Using 1,726 ,Adr(High%$),! To Tezt
78 Stop

I¥f you included something like that in your code, you could saue the
high score from a game in the usually invisible sector 728. Cute?

Trickies in that code: We give High$ that initial value so that +
will have a wvalid LENgth <(like BGET, direct sector access doezr +
change the length of a string). Similarly, we put a RETURN character
into the string (line 58> so that a later sector read and VAL()

find something to terminate the number.

Finally, we leave you with the thought that a sector holds 128 E.--:.
If you used a string array such as

DIM High$(11,18)
and then, in the Call used ADR(High$(1;)>-2 {minus 2 so that we --
the length bytes for the first element of the array), we could k=22
track of up to 18 high scores with, perhaps, 3 initials and up *- ~
digits of -score each. (Why not 1! scores, when we dimensionsd
array to have 11 elements? Well, the actual size of that arrz.
brtes is 11%(10+2) or 132 bytes, where the +2 accounts for the] .
brtes in each element. But the sector can only hold 128 brtes, =: =
would be missing 4 brtes from the last element.)

M

BXL ToolKit F’HQE -z

4.4 PHONE.BXE

This last program “convarsion" is our “Little Black Bcak™ program from
Section 2.%. It was a monster as a standard program. it remains &
monster uszing externded =statements. Put, perhaps, it iT & mare

manacable monster now,

Actually, we changed the character of the program very little. &rd we
even tried to keep all subroutines at or near the same line numbers,
bihat we tried tc do was change every GOSUB to a CALL. Now, we wil]
admit that some of the routines didn’t really need to be rmade irto
Procedures. out once again it is at worst an educational exercice.
We invite you to peruse especially the Procedures in lirecs S&¢
through #792. What you might find most interesting is looking far ¢
variables which we left global, those we did not pass as parame:ers.
The most notable of these are strings wused as field names <e.g.,
Last$) and file names (DBX$, DBF$). The hassle of making these int=
parameters every place they are used was fueled with the 1ikelibkaod
that in any application of this system you would most likely usze anlw
one data base file at a time. Result: they are left global.

=
D)
P

or
b

On the other hand, lTook at the "Get Line"™ routine, lines 58868 tc S
Here was a great opportunity to pass a string both in and out,
allowing wus to put the edited line directly into the user’s <

variable space, no muss, no fuss., This same Procedure benefitz b

Sl
[o o]

i j

Uu T]

-+
T k)

being able to easzily call it with the maximum number of characterz «o
want to get as well as a flag determining the fate of lower czz=
letters, '

And look at all the routines which use the variables Templ and Temp2
which they inevitably make into LOCAL variables. How nice it i= +
not have to worrr about possible conflicts in temporary variable Usage
anymore.

Similarly, "Make Index" starting'at line 7568 shows off its wus z
parameters passed to it. Look at the Call to it in line 2024a@. =--
nice to not be forced into making variable names match!

Aside from all of that, vou might look at the code in lines !
through 1718. Notice how we build up two string arrars with the na
of our Procedures carefully ensconced as elements therein. Then |
at line 2248 and lines 18250 and 18288. Do you see how we can uze
menu option to nicely choose even the correct Procedure to call?

The most important aspect of all this, though, may be that ncw ths
routines have been somewhat freed of the tyranny of line numbers =and
variable names. Feel free to copy them and use them in your cun
programs. Who Knows? You may be a budding data base programmer wha

Just hasn’t had the right tools. Until now.

Page 74 BXL Toolbk it

IR

O

